Suppr超能文献

对电解质溶液中微管蛋白二聚体和微管束的交变电场的响应。

Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions.

机构信息

Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.

Department of Oncology, University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.

出版信息

Sci Rep. 2017 Aug 29;7(1):9594. doi: 10.1038/s41598-017-09323-w.

Abstract

Microtubules (MTs), which are cylindrical protein filaments that play crucial roles in eukaryotic cell functions, have been implicated in electrical signalling as biological nanowires. We report on the small-signal AC ("alternating current") conductance of electrolytic solutions containing MTs and tubulin dimers, using a microelectrode system. We find that MTs (212 nM tubulin) in a 20-fold diluted BRB80 electrolyte increase solution conductance by 23% at 100 kHz, and this effect is directly proportional to the concentration of MTs in solution. The frequency response of MT-containing electrolytes exhibits a concentration-independent peak in the conductance spectrum at 111 kHz (503 kHz FWHM that decreases linearly with MT concentration), which appears to be an intrinsic property of MT ensembles in aqueous environments. Conversely, tubulin dimers (42 nM) decrease solution conductance by 5% at 100 kHz under similar conditions. We attribute these effects primarily to changes in the mobility of ionic species due to counter-ion condensation effects, and changes in the solvent structure and solvation dynamics. These results provide insight into MTs' ability to modulate the conductance of aqueous electrolytes, which in turn, has significant implications for biological information processing, especially in neurons, and for intracellular electrical communication in general.

摘要

微管(MTs)是一种在真核细胞功能中起关键作用的圆柱形蛋白质丝,它被认为是生物纳米线在电信号传导中的作用。我们使用微电极系统报告了含有 MTs 和微管蛋白二聚体的电解液的小信号交流(“交流电”)电导率。我们发现,在 20 倍稀释的 BRB80 电解液中,212nm MTs(212nm 微管蛋白)使溶液电导率增加了 23%,在 100kHz 时,这一效应与溶液中 MTs 的浓度成正比。含 MT 电解液的频率响应在电导谱中表现出一个浓度独立的峰,在 111kHz(503kHz 的半峰全宽随 MT 浓度线性减小)处,这似乎是水溶液中 MT 集合的固有特性。相反,在类似条件下,42nm 微管蛋白二聚体使溶液电导率降低 5%,在 100kHz 时。我们将这些效应主要归因于反离子凝聚效应导致的离子物种迁移率的变化,以及溶剂结构和溶剂化动力学的变化。这些结果提供了对 MTs 调节水相电解液电导率的能力的深入了解,这反过来又对生物信息处理,特别是神经元中的信息处理,以及一般的细胞内电通信具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d367/5574899/aad86ce576d0/41598_2017_9323_Fig1_HTML.jpg

相似文献

2
On resistance switching and oscillations in tubulin microtubule droplets.
J Colloid Interface Sci. 2020 Feb 15;560:589-595. doi: 10.1016/j.jcis.2019.10.065. Epub 2019 Oct 22.
3
Microtubules as Sub-Cellular Memristors.
Sci Rep. 2020 Feb 7;10(1):2108. doi: 10.1038/s41598-020-58820-y.
4
Investigation of the Electrical Properties of Microtubule Ensembles under Cell-Like Conditions.
Nanomaterials (Basel). 2020 Feb 5;10(2):265. doi: 10.3390/nano10020265.
5
Pseudo-spin model for the microtubule wall in external field.
Biosystems. 2005 Nov;82(2):127-36. doi: 10.1016/j.biosystems.2005.06.005. Epub 2005 Aug 19.
7
Mechanics of severing for large microtubule complexes revealed by coarse-grained simulations.
J Chem Phys. 2013 Sep 28;139(12):121926. doi: 10.1063/1.4819817.
9
The electrical properties of isolated microtubules.
Sci Rep. 2023 Jun 22;13(1):10165. doi: 10.1038/s41598-023-36801-1.
10
Radial compression of microtubules and the mechanism of action of taxol and associated proteins.
Biophys J. 2005 Nov;89(5):3410-23. doi: 10.1529/biophysj.104.057679. Epub 2005 Aug 12.

引用本文的文献

1
A Microscale-Optical Interface to Examine Electric Field-Induced Cell Motility Within Whole-Eye Facsimiles.
Micro (Basel). 2025 Mar;5(1). doi: 10.3390/micro5010010. Epub 2025 Feb 28.
2
3
The science of bioelectrical impedance-derived phase angle: insights from body composition in youth.
Rev Endocr Metab Disord. 2025 Apr 10. doi: 10.1007/s11154-025-09964-7.
4
No observable non-thermal effect of microwave radiation on the growth of microtubules.
Sci Rep. 2024 Aug 7;14(1):18286. doi: 10.1038/s41598-024-68852-3.
5
Modeling non-genetic information dynamics in cells using reservoir computing.
iScience. 2024 Mar 28;27(4):109614. doi: 10.1016/j.isci.2024.109614. eCollection 2024 Apr 19.
6
Toward a holographic brain paradigm: a lipid-centric model of brain functioning.
Front Neurosci. 2023 Dec 14;17:1302519. doi: 10.3389/fnins.2023.1302519. eCollection 2023.
9
Behavior of α, β tubulin in DMSO-containing electrolytes.
Nanoscale Adv. 2019 Jun 19;1(9):3364-3371. doi: 10.1039/c9na00035f. eCollection 2019 Sep 11.
10
Cell Responsiveness to Physical Energies: Paving the Way to Decipher a Morphogenetic Code.
Int J Mol Sci. 2022 Mar 15;23(6):3157. doi: 10.3390/ijms23063157.

本文引用的文献

1
An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields.
Int J Environ Res Public Health. 2016 Nov 12;13(11):1128. doi: 10.3390/ijerph13111128.
3
Biological wires, communication systems, and implications for disease.
Biosystems. 2015 Jan;127:14-27. doi: 10.1016/j.biosystems.2014.10.006. Epub 2014 Nov 4.
4
Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology.
Biomicrofluidics. 2012 Jul 13;6(3):34103. doi: 10.1063/1.4737121. Print 2012 Sep.
6
Nonlinear ionic pulses along microtubules.
Eur Phys J E Soft Matter. 2011 May;34(5):49. doi: 10.1140/epje/i2011-11049-0. Epub 2011 May 23.
7
Model of ionic currents through microtubule nanopores and the lumen.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 May;81(5 Pt 1):051912. doi: 10.1103/PhysRevE.81.051912. Epub 2010 May 11.
8
Electromechanical coupling in the membranes of Shaker-transfected HEK cells.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6626-31. doi: 10.1073/pnas.0808045106. Epub 2009 Apr 6.
9
Microtubule alignment and manipulation using AC electrokinetics.
Small. 2008 Sep;4(9):1371-81. doi: 10.1002/smll.200701088.
10
Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10152-7. doi: 10.1073/pnas.0702916104. Epub 2007 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验