Suppr超能文献

通过改变表面电荷密度来控制电场内微管的轨迹。

Control of microtubule trajectory within an electric field by altering surface charge density.

作者信息

Isozaki Naoto, Ando Suguru, Nakahara Tasuku, Shintaku Hirofumi, Kotera Hidetoshi, Meyhöfer Edgar, Yokokawa Ryuji

机构信息

Department of Micro Engineering, Kyoto University, Kyoto 615-8540, Japan.

Department of Mechanical and Biomedical Engineering, University of Michigan, Ann Arbor 48109, Michigan, USA.

出版信息

Sci Rep. 2015 Jan 8;5:7669. doi: 10.1038/srep07669.

Abstract

One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.

摘要

在微流体环境中使用由驱动蛋白驱动的微管的挑战之一是控制其运动方向。尽管应用物理偏置来矫正微管很普遍,但它尚未作为一种与微流体装置相结合的设计方法得以确立。未来,该方法有望实现功能性的由马达驱动的纳米系统。在此,我们提出一种方法,通过设计经由链霉亲和素-生物素相互作用用双链DNA标记的微管负端的带电表面,在电场作用下引导驱动蛋白推进的微管向多个方向移动。用20个碱基对或50个碱基对的双链DNA分子标记的微管根据DNA长度显示出显著不同的轨迹,这与根据其负端测量的电泳迁移率预测的值高度一致。由于标记的DNA分子的有效电荷与缓冲溶液中自由分散的DNA分子的有效电荷相等,因此可以通过选择具有已知电荷的标记分子来估计微管轨迹。此外,估计的轨迹能够确定微流体装置的几何尺寸。这种合理的分子设计和预测方法允许微管在多个方向上被引导,证明了使用由马达蛋白驱动的分子分选器的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验