University of Kansas Medical Center, Department of Otolaryngology - Head and Neck Surgery, Kansas City, KS, USA.
J Alzheimers Dis. 2021;81(2):641-650. doi: 10.3233/JAD-210175.
BACKGROUND: Olfactory dysfunction (OD) is an early symptom of Alzheimer's disease (AD). However, olfactory testing is not commonly performed to test OD in the setting of AD. OBJECTIVE: This work investigates objective OD as a non-invasive biomarker for accurately classifying subjects as cognitively unimpaired (CU), mild cognitive impairment (MCI), and AD. METHODS: Patients with MCI (n = 24) and AD (n = 24), and CU (n = 33) controls completed two objective tests of olfaction (Affordable, Rapid, Olfactory Measurement Array -AROMA; Sniffin' Sticks Screening 12 Test -SST12). Demographic and subjective sinonasal and olfaction symptom information was also obtained. Analyses utilized traditional statistics and machine learning to determine olfactory variables, and combinations of variables, of importance for differentiating normal and disease states. RESULTS: Inability to correctly identify a scent after detection was a hallmark of MCI/AD. AROMA was superior to SST12 for differentiating MCI from AD. Performance on the clove scent was significantly different between all three groups. AROMA regression modeling yielded six scents with AUC of the ROC of 0.890 (p < 0.001). Random forest model machine learning algorithms considering AROMA olfactory data successfully predicted MCI versus AD disease state. Considering only AROMA data, machine learning algorithms were 87.5%accurate (95%CI 0.4735, 0.9968). Sensitivity and specificity were 100%and 75%, respectively with ROC of 0.875. When considering AROMA and subject demographic and subjective data, the AUC of the ROC increased to 0.9375. CONCLUSION: OD differentiates CUs from those with MCI and AD and can accurately predict MCI versus AD. Leveraging OD data may meaningfully guide management and research decisions.
背景:嗅觉障碍(OD)是阿尔茨海默病(AD)的早期症状。然而,在 AD 情况下,通常不会进行嗅觉测试来测试 OD。
目的:本研究旨在探讨客观 OD 作为一种非侵入性生物标志物,用于准确区分认知正常(CU)、轻度认知障碍(MCI)和 AD 患者。
方法:共纳入 MCI 患者(n = 24)、AD 患者(n = 24)和 CU 对照组(n = 33)。所有患者均完成了两种客观嗅觉测试(Affordable,Rapid,Olfactory Measurement Array-AROMA;Sniffin' Sticks Screening 12 Test-SST12)。同时还收集了患者的人口统计学及主观鼻-嗅觉症状信息。采用传统统计学和机器学习方法来确定对区分正常和疾病状态有重要意义的嗅觉变量及其组合。
结果:无法在检测后正确识别气味是 MCI/AD 的特征。AROMA 比 SST12 更能区分 MCI 和 AD。三组患者对丁香气味的识别能力存在显著差异。AROMA 回归模型生成了 6 种气味,ROC 的 AUC 为 0.890(p < 0.001)。考虑 AROMA 嗅觉数据的随机森林模型机器学习算法成功预测了 MCI 与 AD 的疾病状态。仅考虑 AROMA 数据,机器学习算法的准确率为 87.5%(95%CI 0.4735,0.9968)。灵敏度和特异性分别为 100%和 75%,ROC 为 0.875。当考虑 AROMA 和患者的人口统计学及主观数据时,ROC 的 AUC 增加到 0.9375。
结论:OD 可区分 CU 与 MCI 和 AD 患者,能准确预测 MCI 与 AD。利用 OD 数据可以为管理和研究决策提供有意义的依据。
Int Psychogeriatr. 2022-6
J Alzheimers Dis. 2023
J Alzheimers Dis. 2023
Int Forum Allergy Rhinol. 2022-4
Otolaryngol Head Neck Surg. 2022-11