文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

嗅觉表型可区分认知正常的老年人、阿尔茨海默病患者和轻度认知障碍患者:一种结合机器学习和传统统计学方法的研究。

Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer's Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach.

机构信息

University of Kansas Medical Center, Department of Otolaryngology - Head and Neck Surgery, Kansas City, KS, USA.

出版信息

J Alzheimers Dis. 2021;81(2):641-650. doi: 10.3233/JAD-210175.


DOI:10.3233/JAD-210175
PMID:33843686
Abstract

BACKGROUND: Olfactory dysfunction (OD) is an early symptom of Alzheimer's disease (AD). However, olfactory testing is not commonly performed to test OD in the setting of AD. OBJECTIVE: This work investigates objective OD as a non-invasive biomarker for accurately classifying subjects as cognitively unimpaired (CU), mild cognitive impairment (MCI), and AD. METHODS: Patients with MCI (n = 24) and AD (n = 24), and CU (n = 33) controls completed two objective tests of olfaction (Affordable, Rapid, Olfactory Measurement Array -AROMA; Sniffin' Sticks Screening 12 Test -SST12). Demographic and subjective sinonasal and olfaction symptom information was also obtained. Analyses utilized traditional statistics and machine learning to determine olfactory variables, and combinations of variables, of importance for differentiating normal and disease states. RESULTS: Inability to correctly identify a scent after detection was a hallmark of MCI/AD. AROMA was superior to SST12 for differentiating MCI from AD. Performance on the clove scent was significantly different between all three groups. AROMA regression modeling yielded six scents with AUC of the ROC of 0.890 (p < 0.001). Random forest model machine learning algorithms considering AROMA olfactory data successfully predicted MCI versus AD disease state. Considering only AROMA data, machine learning algorithms were 87.5%accurate (95%CI 0.4735, 0.9968). Sensitivity and specificity were 100%and 75%, respectively with ROC of 0.875. When considering AROMA and subject demographic and subjective data, the AUC of the ROC increased to 0.9375. CONCLUSION: OD differentiates CUs from those with MCI and AD and can accurately predict MCI versus AD. Leveraging OD data may meaningfully guide management and research decisions.

摘要

背景:嗅觉障碍(OD)是阿尔茨海默病(AD)的早期症状。然而,在 AD 情况下,通常不会进行嗅觉测试来测试 OD。

目的:本研究旨在探讨客观 OD 作为一种非侵入性生物标志物,用于准确区分认知正常(CU)、轻度认知障碍(MCI)和 AD 患者。

方法:共纳入 MCI 患者(n = 24)、AD 患者(n = 24)和 CU 对照组(n = 33)。所有患者均完成了两种客观嗅觉测试(Affordable,Rapid,Olfactory Measurement Array-AROMA;Sniffin' Sticks Screening 12 Test-SST12)。同时还收集了患者的人口统计学及主观鼻-嗅觉症状信息。采用传统统计学和机器学习方法来确定对区分正常和疾病状态有重要意义的嗅觉变量及其组合。

结果:无法在检测后正确识别气味是 MCI/AD 的特征。AROMA 比 SST12 更能区分 MCI 和 AD。三组患者对丁香气味的识别能力存在显著差异。AROMA 回归模型生成了 6 种气味,ROC 的 AUC 为 0.890(p < 0.001)。考虑 AROMA 嗅觉数据的随机森林模型机器学习算法成功预测了 MCI 与 AD 的疾病状态。仅考虑 AROMA 数据,机器学习算法的准确率为 87.5%(95%CI 0.4735,0.9968)。灵敏度和特异性分别为 100%和 75%,ROC 为 0.875。当考虑 AROMA 和患者的人口统计学及主观数据时,ROC 的 AUC 增加到 0.9375。

结论:OD 可区分 CU 与 MCI 和 AD 患者,能准确预测 MCI 与 AD。利用 OD 数据可以为管理和研究决策提供有意义的依据。

相似文献

[1]
Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer's Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach.

J Alzheimers Dis. 2021

[2]
Olfactory impairment in mild cognitive impairment with Lewy bodies and Alzheimer's disease.

Int Psychogeriatr. 2022-6

[3]
Olfactory Dysfunction Is Already Present with Subjective Cognitive Decline and Deepens with Disease Severity in the Alzheimer's Disease Spectrum.

J Alzheimers Dis. 2021

[4]
Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer's dementia.

Transl Neurodegener. 2020-8-3

[5]
Odor Discrimination as a Marker of Early Alzheimer's Disease.

J Alzheimers Dis. 2023

[6]
Olfactory function and neuropsychological profile to differentiate dementia with Lewy bodies from Alzheimer's disease in patients with mild cognitive impairment: A 5-year follow-up study.

J Neurol Sci. 2015-8-15

[7]
Comparison of odor identification among amnestic and non-amnestic mild cognitive impairment, subjective cognitive decline, and early Alzheimer's dementia.

Neurol Sci. 2018-1-30

[8]
Association Between Olfactory Dysfunction and Amnestic Mild Cognitive Impairment and Alzheimer Disease Dementia.

JAMA Neurol. 2016-1

[9]
Brief Test of Olfactory Dysfunction Based on Diagnostic Features of Specific Odors in Early-Stage Alzheimer Disease.

Med Sci Monit. 2023-5-27

[10]
Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer´s disease: a longitudinal study.

Int Psychogeriatr. 2018-9-21

引用本文的文献

[1]
Personalized Explanations for Early Diagnosis of Alzheimer's Disease Using Explainable Graph Neural Networks with Population Graphs.

Bioengineering (Basel). 2023-6-8

[2]
Odor Discrimination as a Marker of Early Alzheimer's Disease.

J Alzheimers Dis. 2023

[3]
Olfactory, Auditory, and Vestibular Performance: Multisensory Impairment Is Significantly Associated With Incident Cognitive Impairment.

Front Neurol. 2022-7-11

[4]
International consensus statement on allergy and rhinology: Olfaction.

Int Forum Allergy Rhinol. 2022-4

[5]
Identifying Olfactory Phenotypes to Differentiate Between COVID-19 Olfactory Dysfunction and Sinonasal Inflammatory Disease.

Otolaryngol Head Neck Surg. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索