School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China.
J Xray Sci Technol. 2021;29(3):491-506. doi: 10.3233/XST-210858.
The adaptive steepest descent projection onto convex set (ASD-POCS) algorithm is a promising algorithm for constrained total variation (TV) type norm minimization models in computed tomography (CT) image reconstruction using sparse and/or noisy data. However, in ASD-POCS algorithm, the existing gradient expression of the TV-type norm appears too complicated in the implementation code and reduces image reconstruction speed. To address this issue, this work aims to develop and test a simple and fast ASD-POCS algorithm.
Since the original algorithm is not derived thoroughly, we first obtain a simple matrix-form expression by thorough derivation via matrix representations. Next, we derive the simple matrix expressions of the gradients of TV, adaptive weighted TV (awTV), total p-variation (TpV), high order TV (HOTV) norms by term combinations and matrix representations. The deep analysis is then performed to identify the hidden relations of these terms.
The TV reconstruction experiments by use of sparse-view projections via the Shepp-Logan, FORBILD and a real CT image phantoms show that the simplified ASD-POCS (S-ASD-POCS) using the simple matrix-form expression of TV gradient achieve the same reconstruction accuracy relative to ASD-POCS, whereas it enables to speed up the whole ASD process 1.8-2.7 time fast.
The derived simple matrix expressions of the gradients of these TV-type norms may simplify the implementation of the ASD-POCS algorithm and speed up the ASD process. Additionally, a general gradient expression suitable to all the sparse transform-based optimization models is demonstrated so that the ASD-POCS algorithm may be tailored to extended image reconstruction fields with accelerated computational speed.
自适应最速下降投影到凸集(ASD-POCS)算法是一种很有前途的算法,可用于使用稀疏和/或噪声数据的计算机断层扫描(CT)图像重建中的约束全变差(TV)型范数最小化模型。然而,在 ASD-POCS 算法中,现有 TV 型范数的梯度表达式在实现代码中显得过于复杂,降低了图像重建速度。为了解决这个问题,本工作旨在开发和测试一种简单而快速的 ASD-POCS 算法。
由于原始算法没有被彻底推导出来,我们首先通过矩阵表示进行彻底推导,得到一个简单的矩阵形式的表达式。接下来,我们通过项组合和矩阵表示,推导出 TV、自适应加权 TV(awTV)、总 p-变化(TpV)、高阶 TV(HOTV)范数的简单矩阵表达式。然后进行深入分析,以确定这些项的隐藏关系。
稀疏视图投影的 TV 重建实验,使用 Shepp-Logan、FORBILD 和真实 CT 图像体模,结果表明,使用 TV 梯度的简单矩阵形式表达式的简化 ASD-POCS(S-ASD-POCS)相对于 ASD-POCS 实现了相同的重建精度,同时能够将整个 ASD 过程提速 1.8-2.7 倍。
这些 TV 型范数的梯度的推导的简单矩阵表达式可以简化 ASD-POCS 算法的实现并加速 ASD 过程。此外,还展示了一种适用于所有基于稀疏变换的优化模型的通用梯度表达式,使得 ASD-POCS 算法可以应用于扩展的图像重建领域,实现加速的计算速度。