Suppr超能文献

基于二维防散射格栅和格栅散射采样的用于图像引导放射治疗的定量 CBCT 流水线。

A quantitative CBCT pipeline based on 2D antiscatter grid and grid-based scatter sampling for image-guided radiation therapy.

机构信息

Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA.

Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California, USA.

出版信息

Med Phys. 2023 Dec;50(12):7980-7995. doi: 10.1002/mp.16681. Epub 2023 Sep 4.

Abstract

BACKGROUND

Quantitative accuracy is critical for expanding the role of cone beam CT (CBCT) imaging from target localization to quantitative treatment monitoring and plan adaptations in radiation therapy. Despite advances in CBCT image quality improvement methods, quantitative accuracy gap between CBCT and multi-detector CT (MDCT) remains.

PURPOSE

In this work, a physics-driven approach was investigated that combined robust scatter rejection, raw data correction and iterative image reconstruction to further improve CBCT image quality and quantitative accuracy, referred to as quantitative CBCT (qCBCT).

METHODS

QCBCT approach includes tungsten 2D antiscatter grid hardware, residual scatter correction with grid-based scatter sampling, image lag, and beam hardening correction for offset detector geometry linac-mounted CBCT. Images were reconstructed with iterative image reconstruction to reduce image noise. qCBCT was evaluated using a variety of phantoms to investigate the effect of object size and its composition on image quality, and image quality was benchmarked against clinical CBCT and gold standard MDCT images used for treatment planning.

RESULTS

QCBCT provided statistically significant improvement in CT number accuracy and reduced image artifacts when compared to clinical CBCT images. When compared to gold standard MDCT, mean HU errors in qCBCT and clinical CBCT were 17 ± 9 and 38 ± 29 HU, respectively. Magnitude of phantom size dependent HU variations were comparable between MDCT and qCBCT images. With iterative reconstruction, contrast-to-noise ratio improved by 25% when compared to clinical CBCT protocols.

CONCLUSIONS

Combination of novel scatter suppression techniques and other data correction methods in qCBCT provided CT number accuracy comparable to gold standard MDCT used for treatment planning. This approach may potentially improve CBCT's promise in fulfilling the tasks that demand high quantitative accuracy, such as online dose calculations and treatment response assessment, in image guided radiation therapy.

摘要

背景

定量准确性对于将锥形束 CT(CBCT)成像的作用从靶区定位扩展到放射治疗中的定量治疗监测和计划自适应至关重要。尽管 CBCT 图像质量改善方法取得了进展,但 CBCT 与多探测器 CT(MDCT)之间的定量准确性差距仍然存在。

目的

在这项工作中,研究了一种物理驱动的方法,该方法结合了强大的散射抑制、原始数据校正和迭代图像重建,以进一步提高 CBCT 图像质量和定量准确性,称为定量 CBCT(qCBCT)。

方法

qCBCT 方法包括钨二维防散射栅硬件、基于栅格的散射采样、图像滞后和用于偏移探测器几何线性加速器安装的 CBCT 的束硬化校正的残留散射校正。使用迭代图像重建对图像进行重建,以降低图像噪声。使用各种体模评估 qCBCT,以研究物体大小及其组成对图像质量的影响,并将图像质量与用于治疗计划的临床 CBCT 和金标准 MDCT 图像进行基准测试。

结果

与临床 CBCT 图像相比,qCBCT 在 CT 数准确性方面提供了统计学上的显著改善,并减少了图像伪影。与金标准 MDCT 相比,qCBCT 和临床 CBCT 的平均 HU 误差分别为 17±9 和 38±29 HU。MDCT 和 qCBCT 图像之间的体模大小依赖性 HU 变化幅度相当。与临床 CBCT 方案相比,迭代重建将对比度噪声比提高了 25%。

结论

在 qCBCT 中,新型散射抑制技术和其他数据校正方法的组合提供了与用于治疗计划的金标准 MDCT 相当的 CT 数准确性。这种方法可能有潜力提高 CBCT 在满足需要高定量准确性的任务方面的作用,例如在线剂量计算和治疗反应评估,在图像引导放射治疗中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验