Suppr超能文献

在取向碳化二亚胺铁结构中实现快速电荷扩散以实现高倍率钠离子存储性能

Realizing Fast Charge Diffusion in Oriented Iron Carbodiimide Structure for High-Rate Sodium-Ion Storage Performance.

作者信息

Li Jiayin, Wang Rong, Guo Penghui, Liu Xing, Hu Yunfei, Xu Zhanwei, Liu Yijun, Cao Liyun, Huang Jianfeng, Kajiyoshi Koji

机构信息

School of Material Science & Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.

School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

ACS Nano. 2021 Apr 27;15(4):6410-6419. doi: 10.1021/acsnano.0c08314. Epub 2021 Apr 12.

Abstract

Iron carbodiimide (FeNCN) belongs to a type of metal compounds with a more covalent bonding structure compared to common transition metal oxides. It could provide possibilities for various structural designs with improved charge-transfer kinetics in battery systems. Moreover, these possibilities are still highly expected for promoting enhancement in rate performance of sodium (Na)-ion battery. Herein, oriented FeNCN crystallites were grown on the carbon-based substrate with exposed {010} faces along the [001] direction (O-FeNCN/S). It provides a high Na-ion storage capacity with excellent rate capability (680 mAh g at 0.2 A g and 360 mAh g at 20 A g), presenting rapid charge-transfer kinetics with high contribution of pseudocapacitance during a typical conversion reaction. This high rate performance is attributed to the oriented morphology of FeNCN crystallites. Its orientation along [001] maintains preferred Na-ion diffusion along the two directions in the entire morphology of O-FeNCN/S, supporting fast Na-ion storage kinetics during the charge/discharge process. This study could provide ideas toward the understanding of the rational structural design of metal carbodiimides for attaining high electrochemical performance in future.

摘要

铁碳二亚胺(FeNCN)属于一类金属化合物,与常见的过渡金属氧化物相比,其具有更多的共价键结构。它为电池系统中各种具有改善电荷转移动力学的结构设计提供了可能性。此外,这些可能性对于促进钠离子(Na)电池倍率性能的提升仍具有很高的期望。在此,沿[001]方向在具有暴露{010}面的碳基基底上生长了取向的FeNCN微晶(O-FeNCN/S)。它具有高的钠离子存储容量和优异的倍率性能(在0.2 A g时为680 mAh g,在20 A g时为360 mAh g),在典型的转化反应过程中呈现出快速的电荷转移动力学,且赝电容贡献高。这种高倍率性能归因于FeNCN微晶的取向形态。其沿[001]方向的取向在O-FeNCN/S的整个形态中保持了钠离子沿两个方向的优先扩散,支持了充放电过程中快速的钠离子存储动力学。该研究可为理解金属碳二亚胺的合理结构设计以在未来获得高电化学性能提供思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验