Suppr超能文献

基于高密度催化晶面构建编织多孔碳纤维以实现高度可逆的钠离子存储

Architecting Braided Porous Carbon Fibers Based on High-Density Catalytic Crystal Planes to Achieve Highly Reversible Sodium-Ion Storage.

作者信息

Li Chuanqi, Zhang Zhijia, Chen Yuefang, Xu Xiaoguang, Zhang Mengmeng, Kang Jianli, Liang Rui, Chen Guoxin, Lu Huanming, Yu Zhenyang, Li Wei-Jie, Wang Nan, Huang Qin, Zhang Delin, Chou Shu-Lei, Jiang Yong

机构信息

State Key Laboratory of Separation Membrane and Membrane Processes, Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, School of Materials Science and Engineering, School of Electronic and Information Engineering, School of Mechanical Engineering, Tiangong University, Tianjin, 300387, China.

Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.

出版信息

Adv Sci (Weinh). 2022 Jun;9(18):e2104780. doi: 10.1002/advs.202104780. Epub 2022 Apr 26.

Abstract

Carbonaceous materials are considered strong candidates as anode materials for sodium-ion batteries (SIBs), which are expected to play an indispensable role in the carbon-neutral era. Herein, novel braided porous carbon fibres (BPCFs) are prepared using the chemical vapour deposition (CVD) method. The BPCFs possess interwoven porous structures and abundant vacancies. The growth mechanism of the BPCFs can be attributed to the polycrystalline transformation of the nanoporous copper catalyst in the early stage of CVD process. Density functional theory calculations suggest that the Na adsorption energies of the mono-vacancy edges of the BPCFs (-1.22 and -1.09 eV) are lower than that of an ideal graphene layer (-0.68 eV), clarifying in detail the adsorption-dominated sodium storage mechanism. Hence, the BPCFs as an anode material present an outstanding discharge capacity of 401 mAh g at 0.1 A g-1 after 500 cycles. Remarkably, this BPCFs anode, under high-mass-loading of 5 mg cm-2, shows excellent long-term cycling ability with a reversible capacity of 201 mAh g at 10 A g over 1000 cycles. This study provided a novel strategy for the development of high-performance carbonaceous materials for SIBs.

摘要

碳质材料被认为是钠离子电池(SIB)负极材料的有力候选者,有望在碳中性时代发挥不可或缺的作用。在此,采用化学气相沉积(CVD)法制备了新型编织多孔碳纤维(BPCF)。BPCF具有交织的多孔结构和丰富的空位。BPCF的生长机制可归因于CVD过程早期纳米多孔铜催化剂的多晶转变。密度泛函理论计算表明,BPCF单空位边缘的Na吸附能(-1.22和-1.09 eV)低于理想石墨烯层的吸附能(-0.68 eV),详细阐明了以吸附为主的钠存储机制。因此,BPCF作为负极材料在0.1 A g-1下经过500次循环后具有401 mAh g的出色放电容量。值得注意的是,这种BPCF负极在5 mg cm-2的高质量负载下,在10 A g下经过1000次循环表现出优异的长期循环能力,可逆容量为201 mAh g。本研究为开发用于SIB的高性能碳质材料提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d811/9218750/e62eda297fef/ADVS-9-2104780-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验