Suppr超能文献

基于硼酸的分子糖传感器

Molecular Boronic Acid-Based Saccharide Sensors.

作者信息

Williams George T, Kedge Jonathan L, Fossey John S

机构信息

School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.

出版信息

ACS Sens. 2021 Apr 23;6(4):1508-1528. doi: 10.1021/acssensors.1c00462. Epub 2021 Apr 12.

Abstract

Boronic acids can reversibly bind diols, a molecular feature that is ubiquitous within saccharides, leading to their use in the design and implementation of sensors for numerous saccharide species. There is a growing understanding of the importance of saccharides in many biological processes and systems; while saccharide or carbohydrate sensing in medicine is most often associated with detection of glucose in diabetes patients, saccharides have proven to be relevant in a range of disease states. Herein the relevance of carbohydrate sensing for biomedical applications is explored, and this review seeks to outline how the complexity of saccharides presents a challenge for the development of selective sensors and describes efforts that have been made to understand the underpinning fluorescence and binding mechanisms of these systems, before outlining examples of how researchers have used this knowledge to develop ever more selective receptors.

摘要

硼酸能够与二醇发生可逆结合,这是糖类中普遍存在的一种分子特性,使得硼酸在多种糖类物质传感器的设计与应用中得到了广泛应用。人们越来越认识到糖类在许多生物过程和系统中的重要性;虽然医学中的糖类或碳水化合物传感通常与糖尿病患者的葡萄糖检测相关,但糖类已被证明在一系列疾病状态中都具有相关性。本文探讨了碳水化合物传感在生物医学应用中的相关性,本综述旨在概述糖类的复杂性如何对选择性传感器的开发构成挑战,并描述为理解这些系统的荧光和结合机制所做的努力,然后列举研究人员如何利用这些知识开发更具选择性的受体的实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ec3/8155662/4ca3921f1e53/se1c00462_0001.jpg

相似文献

1
Molecular Boronic Acid-Based Saccharide Sensors.
ACS Sens. 2021 Apr 23;6(4):1508-1528. doi: 10.1021/acssensors.1c00462. Epub 2021 Apr 12.
2
Selective sensing of saccharides using simple boronic acids and their aggregates.
Chem Soc Rev. 2013 Oct 21;42(20):8032-48. doi: 10.1039/c3cs60148j.
3
Boronic acid-based chemical sensors for saccharides.
Carbohydr Res. 2017 Nov 27;452:129-148. doi: 10.1016/j.carres.2017.10.010. Epub 2017 Oct 20.
4
Differential sensing of sugars by colorimetric arrays.
Curr Opin Chem Biol. 2010 Dec;14(6):758-66. doi: 10.1016/j.cbpa.2010.07.006. Epub 2010 Aug 5.
5
Boronic Acid-Based Carbohydrate Sensing.
Chem Asian J. 2015 Sep;10(9):1836-48. doi: 10.1002/asia.201500444. Epub 2015 Aug 6.
6
Sensitive and specific detection of saccharide species based on fluorescence: update from 2016.
Anal Bioanal Chem. 2023 Jul;415(18):4061-4077. doi: 10.1007/s00216-023-04703-w. Epub 2023 Apr 29.
9
Chemical functionalization of oligodeoxynucleotides with multiple boronic acids for the polyvalent binding of saccharides.
Bioconjug Chem. 2011 Mar 16;22(3):388-96. doi: 10.1021/bc100376x. Epub 2011 Feb 7.
10
Photo- and Electrochemical Dual-Responsive Iridium Probe for Saccharide Detection.
Chemistry. 2022 Jan 19;28(4):e202103541. doi: 10.1002/chem.202103541. Epub 2021 Dec 8.

引用本文的文献

1
Catalytic efficiency of Cu-MOFs: HKUST-1 and CuBDC for the protodeboronation of aryl boronic acids.
RSC Adv. 2025 Aug 21;15(36):29453-29461. doi: 10.1039/d5ra04172d. eCollection 2025 Aug 18.
2
Strategies to Improve the Sustainability of Silicone Polymers.
Macromolecules. 2025 Apr 11;58(8):3742-3763. doi: 10.1021/acs.macromol.5c00179. eCollection 2025 Apr 22.
3
Biofouling-resistant nanomaterials for non-enzymatic glucose sensors: A critical review.
Mater Today Bio. 2025 Apr 8;32:101746. doi: 10.1016/j.mtbio.2025.101746. eCollection 2025 Jun.
4
Cationic Polymer Brushes Functionalized with Carbon Dots and Boronic Acids for Bacterial Detection and Inactivation.
ACS Omega. 2025 Apr 2;10(14):14536-14546. doi: 10.1021/acsomega.5c01507. eCollection 2025 Apr 15.
5
Functional Analysis of Mannosyltransferase-Related Genes in .
Int J Mol Sci. 2025 Mar 25;26(7):2979. doi: 10.3390/ijms26072979.
6
Phenylboronic acid in targeted cancer therapy and diagnosis.
Theranostics. 2025 Mar 3;15(9):3733-3748. doi: 10.7150/thno.104558. eCollection 2025.
8
Live imaging of the extracellular matrix with a glycan-binding fluorophore.
Nat Methods. 2025 May;22(5):1070-1080. doi: 10.1038/s41592-024-02590-2. Epub 2025 Feb 6.

本文引用的文献

1
Selective glucose sensing in complex media using a biomimetic receptor.
Chem Sci. 2020 Feb 25;11(12):3223-3227. doi: 10.1039/c9sc05406e.
2
Human serum albumin-imprinted polymers with high capacity and selectivity for abundant protein depletion.
Acta Biomater. 2021 May;126:249-258. doi: 10.1016/j.actbio.2021.03.010. Epub 2021 Mar 17.
3
Advances in applied supramolecular technologies.
Chem Soc Rev. 2021 Mar 1;50(4):2737-2763. doi: 10.1039/d0cs00948b.
4
Glycoproteomics.
Nat Methods. 2021 Jan;18(1):28. doi: 10.1038/s41592-020-01028-9.
5
Indicator displacement assays (IDAs): the past, present and future.
Chem Soc Rev. 2021 Jan 7;50(1):9-38. doi: 10.1039/c9cs00538b. Epub 2020 Nov 10.
6
The Role of Saccharides in the Mechanisms of Pathogenicity of f. sp. in Yellow Lupine ( L.).
Int J Mol Sci. 2020 Oct 1;21(19):7258. doi: 10.3390/ijms21197258.
7
Polysaccharide length affects mycobacterial cell shape and antibiotic susceptibility.
Sci Adv. 2020 Sep 16;6(38). doi: 10.1126/sciadv.aba4015. Print 2020 Sep.
8
Emergence and significance of carbohydrate-specific antibodies.
Genes Immun. 2020 Aug;21(4):224-239. doi: 10.1038/s41435-020-0105-9. Epub 2020 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验