Suppr超能文献

开发用于预测越南辛奎恩矿释放的氡气扩散的人工神经网络。

Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam.

机构信息

Hanoi University of Mining and Geology, 18 Vien Street, Bac Tu Liem District, Hanoi, Viet Nam.

University of Transport Technology, Hanoi, 100000, Viet Nam.

出版信息

Environ Pollut. 2021 Aug 1;282:116973. doi: 10.1016/j.envpol.2021.116973. Epub 2021 Mar 23.

Abstract

Understanding the radon dispersion released from this mine are important targets as radon dispersion is used to assess radiological hazard to human. In this paper, the main objective is to develop and optimize a machine learning model namely Artificial Neural Network (ANN) for quick and accurate prediction of radon dispersion released from Sinquyen mine, Vietnam. For this purpose, a total of million data collected from the study area, which includes input variables (the gamma data of uranium concentration with 3 × 3m grid net survey inside mine, 21 of CR-39 detectors inside dwellings surrounding mine, and gamma dose at 1 m from ground surface data) and an output variable (radon dispersion) were used for training and validating the predictive model. Various validation methods namely coefficient of determination (R), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) were used. In addition, Partial dependence plots (PDP) was used to evaluate the effect of each input variable on the predictive results of output variable. The results show that ANN performed well for prediction of radon dispersion, with low values of error (i.e., R = 0.9415, RMSE = 0.0589, and MAE = 0.0203 for the testing dataset). The increase of number of hidden layers in ANN structure leads the increase of accuracy of the predictive results. The sensitivity results show that all input variables govern the dispersion radon activity with different amplitudes and fitted with different equations but the gamma dose is the most influenced and important variable in comparison with strike, distance and uranium concentration variables for prediction of radon dispersion.

摘要

了解该矿释放的氡气扩散情况是重要的目标,因为氡气扩散被用来评估对人类的放射性危害。本文的主要目的是开发和优化一个机器学习模型,即人工神经网络(ANN),以快速准确地预测越南辛奎延矿释放的氡气扩散。为此,从研究区域共收集了 100 万条数据,其中包括输入变量(矿内铀浓度的伽马数据,网格网调查为 3x3m,矿周围住宅内的 21 个 CR-39 探测器,以及距地面 1m 处的伽马剂量数据)和输出变量(氡气扩散),用于训练和验证预测模型。采用了各种验证方法,即确定系数(R)、平均绝对误差(MAE)、均方根误差(RMSE)。此外,还使用了偏部分依赖图(PDP)来评估每个输入变量对输出变量预测结果的影响。结果表明,ANN 在预测氡气扩散方面表现良好,误差值较低(即测试数据集的 R 值为 0.9415、RMSE 值为 0.0589 和 MAE 值为 0.0203)。ANN 结构中隐藏层数量的增加会导致预测结果的准确性提高。敏感性结果表明,所有输入变量都以不同的幅度控制氡气扩散活动,并与不同的方程拟合,但与铀浓度变量相比,伽马剂量是影响氡气扩散预测的最具影响力和重要的变量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验