Pérez B, Stieff L C, Ponce-Amanca R E, Guevara-Pillaca C J, Palacios D
Departamento de Ciencias, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, San Miguel, 15088, Lima, Peru.
Rad Elec Inc., Frederick, MD, 21704, USA.
Sci Rep. 2025 Jul 1;15(1):22140. doi: 10.1038/s41598-025-08108-w.
Radon exhalation is a natural process by which atoms of the radioactive gas radon diffuse in the soil and then exhale to an indoor and/or outdoor environment. High radon concentration levels, possibly from high radon exhalation rate levels, can generate an impact on public health and environmental safety, particularly in agricultural areas where prolonged exposure may affect nearby populations. While studies have examined radon exhalation, few have focused on modeling its behavior in agricultural settings or identifying key environmental and soil parameters that influence its variation. This study addresses this gap by applying Artificial Neural Network (ANN) models and Monte Carlo methods. Three distinct approaches were developed based on radon exhalation measurements from four Peruvian agricultural regions, incorporating meteorological and soil physicochemical data. First, the ANN model determined environmental factors affecting radon exhalation, achieving [Formula: see text] values of 0.7949 (training) and 0.7656 (validation). Second, simulations analyzed radon diffusion under varying wind conditions, assessing dispersion risks. Third, gamma radiation measurements quantified radon progeny contributions ([Formula: see text] efficiency) for soil moisture detection. This integrated methodology advances understanding of agricultural radon dynamics, supporting improved radiological safety protocols and soil monitoring techniques.
氡析出是一种自然过程,通过该过程,放射性气体氡的原子在土壤中扩散,然后排放到室内和/或室外环境中。高浓度的氡,可能源于高氡析出率,会对公众健康和环境安全产生影响,特别是在农业地区,长期暴露可能会影响附近人群。虽然已有研究探讨了氡析出,但很少有研究关注其在农业环境中的行为建模,或确定影响其变化的关键环境和土壤参数。本研究通过应用人工神经网络(ANN)模型和蒙特卡罗方法填补了这一空白。基于秘鲁四个农业地区的氡析出测量数据,结合气象和土壤理化数据,开发了三种不同的方法。首先,人工神经网络模型确定了影响氡析出的环境因素,训练集的[公式:见原文]值为0.7949,验证集的[公式:见原文]值为0.7656。其次,模拟分析了不同风况下的氡扩散情况,评估了扩散风险。第三,伽马辐射测量量化了氡子体对土壤湿度检测的贡献([公式:见原文]效率)。这种综合方法增进了对农业氡动态的理解,有助于改进放射安全规程和土壤监测技术。