Kim Young Hyun, Lin Meng C, Radke Clayton J
Vision Science Group, University of California, Berkeley, CA, 94720, United States; Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, 94720, United States; Clinical Research Center, School of Optometry, University of California, Berkeley, CA, 94720, United States.
Vision Science Group, University of California, Berkeley, CA, 94720, United States; Clinical Research Center, School of Optometry, University of California, Berkeley, CA, 94720, United States.
Cont Lens Anterior Eye. 2022 Feb;45(1):101443. doi: 10.1016/j.clae.2021.101443. Epub 2021 Apr 9.
With active investigation underway for embedded-circuit contact lenses, safe oxygen supply of these novel lenses remains a question. Central-to-peripheral corneal edema for healthy eyes during wear of soft contact (SCL) and scleral lenses (SL) with embedding components is assessed.
Various 2-dimensional (2D) designs of SL and SCL with embedded components are constructed on Comsol Multiphysics 5.5. Local corneal swelling associated with the designed lenses is determined by a recently developed 2D metabolic-swelling model. Settled central post-lens tear-film thicknesses (PoLTFs) are set at 400 μm and 3 μm for SL and SCL designs, respectively. Each lens design has an axisymmetric central and an axisymmetric peripheral embedment. Oxygen permeability (Dk) of the lens and the embedments ranges from 0 to 200 Barrer. Dimensions and location of the embedments are varied to assess optimal-design configurations to minimize central-to-peripheral corneal edema.
By adjusting oxygen Dk of the central embedment, the peripheral embedment, or the lens matrix polymer, corneal swelling is reduced by up to 2.5 %, 1.5 %, or 1.4 % of the baseline corneal thickness, respectively, while keeping all other parameters constant. A decrease in PoLTF thickness from 400 μm to 3 μm decreases corneal edema by up to 1.8 % of the baseline corneal thickness. Shifting the peripheral embedment farther out towards the periphery and towards the anterior lens surface reduces peak edema by up to 1.3 % and 0.6 % of the baseline corneal thickness, respectively.
To minimize central-to-peripheral corneal edema, embedments should be placed anteriorly and far into the periphery to allow maximal limbal metabolic support and oxygen transport in the polar direction (i.e., the θ-direction in spherical coordinates). High-oxygen transmissibility for all components and thinner PoLTF thickness are recommended to minimize corneal edema. Depending on design specifications, less than 1 % swelling over the entire cornea is achievable even with oxygen-impermeable embedments.
随着对嵌入式电路隐形眼镜的积极研究,这些新型隐形眼镜的安全氧气供应仍然是一个问题。评估了在佩戴带有嵌入组件的软性隐形眼镜(SCL)和巩膜镜片(SL)时健康眼睛从角膜中央到周边的水肿情况。
在Comsol Multiphysics 5.5上构建了各种带有嵌入组件的SL和SCL的二维(2D)设计。通过最近开发的二维代谢肿胀模型确定与设计的镜片相关的局部角膜肿胀情况。对于SL和SCL设计,稳定后的镜片后泪膜中央厚度(PoLTF)分别设定为400μm和3μm。每种镜片设计都有一个轴对称的中央嵌入物和一个轴对称的周边嵌入物。镜片及其嵌入物的透氧性(Dk)范围为0至200巴耳。改变嵌入物的尺寸和位置以评估最佳设计配置,以尽量减少角膜中央到周边的水肿。
通过调整中央嵌入物、周边嵌入物或镜片基质聚合物的氧气Dk,在保持所有其他参数不变的情况下,角膜肿胀分别最多可减少基线角膜厚度的2.5%、1.5%或1.4%。PoLTF厚度从400μm降至3μm可使角膜水肿最多减少基线角膜厚度的1.8%。将周边嵌入物向外进一步移向周边和移向前镜片表面,可使峰值水肿分别最多减少基线角膜厚度的1.3%和0.6%。
为尽量减少角膜中央到周边的水肿,嵌入物应放置在前部并深入周边,以实现最大的角膜缘代谢支持和沿极向(即球坐标中的θ方向)的氧气传输。建议所有组件具有高透氧性并减小PoLTF厚度,以尽量减少角膜水肿。根据设计规格,即使使用不透氧的嵌入物,整个角膜的肿胀也可控制在1%以内。