Inoue Daichi, Polaski Jacob T, Taylor Justin, Castel Pau, Chen Sisi, Kobayashi Susumu, Hogg Simon J, Hayashi Yasutaka, Pineda Jose Mario Bello, El Marabti Ettaib, Erickson Caroline, Knorr Katherine, Fukumoto Miki, Yamazaki Hiromi, Tanaka Atsushi, Fukui Chie, Lu Sydney X, Durham Benjamin H, Liu Bo, Wang Eric, Mehta Sanjoy, Zakheim Daniel, Garippa Ralph, Penson Alex, Chew Guo-Liang, McCormick Frank, Bradley Robert K, Abdel-Wahab Omar
Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.
Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA.
Nat Genet. 2021 May;53(5):707-718. doi: 10.1038/s41588-021-00828-9. Epub 2021 Apr 12.
Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.
大多数真核生物含有两种不同的前体mRNA剪接机制:主要剪接体,它去除超过99%的内含子;以及次要剪接体,它去除罕见的、进化上保守的内含子。尽管推测次要剪接体具有重要的调节功能,但其生理作用尚未得到充分理解。例如,次要剪接体成分ZRSR2会发生复发性的、与白血病相关的突变,但次要内含子、造血作用和癌症之间的功能联系尚不清楚。在这里,我们发现通过ZRSR2缺失导致的次要内含子切除受损会增强造血干细胞的自我更新能力。模拟含次要内含子的mRNA物种无义介导衰变的CRISPR筛选聚焦于LZTR1,一种RAS相关GTP酶的调节剂。在RAS病努南综合征中也发现了LZTR1次要内含子保留,这是由于内含子突变破坏了剪接以及多种实体瘤。这些数据揭示了次要内含子识别是造血作用的调节因子,次要内含子内的非编码突变是潜在的癌症驱动因素,以及ZRSR2突变、LZTR1调节和白血病之间的联系。