Suppr超能文献

重新审视次要内含子剪接:新的包含次要内含子的基因的鉴定以及次要内含子的组织依赖性保留和可变剪接。

Minor intron splicing revisited: identification of new minor intron-containing genes and tissue-dependent retention and alternative splicing of minor introns.

机构信息

Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, 06269, USA.

Institute of Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.

出版信息

BMC Genomics. 2019 Aug 30;20(1):686. doi: 10.1186/s12864-019-6046-x.

Abstract

BACKGROUND

Mutations in minor spliceosome components such as U12 snRNA (cerebellar ataxia) and U4atac snRNA (microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1)) result in tissue-specific symptoms. Given that the minor spliceosome is ubiquitously expressed, we hypothesized that these restricted phenotypes might be caused by the tissue-specific regulation of the minor spliceosome targets, i.e. minor intron-containing genes (MIGs). The current model of inefficient splicing is thought to apply to the regulation of the ~ 500 MIGs identified in the U12DB. However this database was created more than 10 years ago. Therefore, we first wanted to revisit the classification of minor introns in light of the most recent reference genome. We then sought to address specificity of MIG expression, minor intron retention, and alternative splicing (AS) across mouse and human tissues.

RESULTS

We employed position-weight matrices to obtain a comprehensive updated list of minor introns, consisting of 722 mouse and 770 human minor introns. These can be found in the Minor Intron DataBase (MIDB). Besides identification of 99% of the minor introns found in the U12DB, we also discovered ~ 150 new MIGs. We then analyzed the RNAseq data from eleven different mouse tissues, which revealed tissue-specific MIG expression and minor intron retention. Additionally, many minor introns were efficiently spliced compared to their flanking major introns. Finally, we identified several novel AS events across minor introns in both mouse and human, which were also tissue-dependent. Bioinformatics analysis revealed that several of the AS events could result in the production of novel tissue-specific proteins. Moreover, like the major introns, we found that these AS events were more prevalent in long minor introns, while retention was favoured in shorter introns.

CONCLUSION

Here we show that minor intron splicing and AS across minor introns is a highly organised process that might be regulated in coordination with the major spliceosome in a tissue-specific manner. We have provided a framework to further study the impact of the minor spliceosome and the regulation of MIG expression. These findings may shed light on the mechanism underlying tissue-specific phenotypes in diseases associated with minor spliceosome inactivation. MIDB can be accessed at https://midb.pnb.uconn.edu .

摘要

背景

U12 snRNA(小脑共济失调)和 U4atac snRNA(小头畸形骨发育不良原始侏儒症 1 型(MOPD1))等次要剪接体成分的突变导致组织特异性症状。鉴于次要剪接体广泛表达,我们假设这些受限的表型可能是由次要剪接体靶标(即含 minor 内含子的基因(MIGs))的组织特异性调节引起的。目前认为低效剪接的模型适用于 U12DB 中鉴定的约 500 个 MIG 的调节。然而,这个数据库是在 10 多年前创建的。因此,我们首先希望根据最新的参考基因组重新审视 minor 内含子的分类。然后,我们试图解决 mouse 和 human 组织中 MIG 表达、minor 内含子保留和选择性剪接(AS)的特异性问题。

结果

我们使用位置权重矩阵获得了一个全面更新的 minor 内含子列表,其中包括 722 个 mouse 和 770 个人类 minor 内含子。这些可以在 Minor Intron DataBase(MIDB)中找到。除了鉴定出 U12DB 中发现的 minor 内含子的 99%之外,我们还发现了约 150 个新的 MIG。然后,我们分析了来自 11 种不同 mouse 组织的 RNAseq 数据,这些数据显示了组织特异性的 MIG 表达和 minor 内含子保留。此外,与侧翼的 major 内含子相比,许多 minor 内含子被有效地剪接。最后,我们在 mouse 和 human 中鉴定了几个 minor 内含子中的新的 AS 事件,这些事件也是组织依赖性的。生物信息学分析表明,这些 AS 事件中的一些可能导致产生新的组织特异性蛋白质。此外,与 major 内含子一样,我们发现这些 AS 事件在较长的 minor 内含子中更为普遍,而较短的内含子则有利于保留。

结论

在这里,我们表明跨 minor 内含子的 minor 内含子剪接和 AS 是一个高度组织化的过程,可能以组织特异性的方式与 major 剪接体协调调节。我们提供了一个框架来进一步研究 minor 剪接体和 MIG 表达调节的影响。这些发现可能为与 minor 剪接体失活相关的疾病中组织特异性表型的机制提供启示。MIDB 可在 https://midb.pnb.uconn.edu 上访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c9f/6717393/330058897799/12864_2019_6046_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验