Hamada Fumiya, Saeki Akinori
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
ChemSusChem. 2021 Sep 6;14(17):3528-3534. doi: 10.1002/cssc.202100566. Epub 2021 May 5.
A non-fullerene small molecular acceptor (NFA) is a prominent molecule that shows moderate electron mobility and a narrow bandgap complementary to middle-bandgap p-type conjugated polymers, which leads to great improvement in the performance of organic photovoltaic (OPV) cells. However, little is known about the relaxation of charge carriers, which is key to efficient charge transport. Simultaneous time-of-flight (TOF) and time-resolved microwave conductivity (TRMC) measurements have been carried out on benzodithiophene-based polymer (PBDB-T):soluble C -fullerere (PCBM) and PBDB-T:NFA (ITIC or Y6) blends, as benchmark systems. In addition to the conventional TOF mobilities, relaxation of the hole and electron mobility are evaluated by TRMC under an external electric field. PBDB-T : ITIC exhibits much faster relaxation than PBDB-T : PCBM, whereas that in PBDB-T : Y6 is moderate. This is consistent with the energetic disorder estimated from the photoabsorption onset. Interestingly, the slower relaxation of the electrons compared to the holes in PBDB-T : Y6 is in line with the preferred normal device structure. Our work deepens the understanding of the energetics of polymer : NFA blends and offers a basis for achieving efficient NFA properties.
非富勒烯小分子受体(NFA)是一种重要的分子,具有适度的电子迁移率和与中带隙p型共轭聚合物互补的窄带隙,这使得有机光伏(OPV)电池的性能有了很大提高。然而,对于电荷载流子的弛豫过程却知之甚少,而这是高效电荷传输的关键。作为基准体系,已对基于苯并二噻吩的聚合物(PBDB-T):可溶性C-富勒烯(PCBM)和PBDB-T:NFA(ITIC或Y6)共混物进行了同时飞行时间(TOF)和时间分辨微波电导率(TRMC)测量。除了传统的TOF迁移率外,还通过TRMC在外部电场下评估空穴和电子迁移率的弛豫情况。PBDB-T:ITIC的弛豫速度比PBDB-T:PCBM快得多,而PBDB-T:Y6的弛豫速度适中。这与从光吸收起始点估计的能量无序情况一致。有趣的是,在PBDB-T:Y6中,电子的弛豫速度比空穴慢,这与优选的常规器件结构一致。我们的工作加深了对聚合物:NFA共混物能量学的理解,并为实现高效的NFA性能提供了基础。