Suppr超能文献

德克萨斯州公共机构在 COVID-19 大流行期间的推文和公众参与:自然语言处理方法。

Texas Public Agencies' Tweets and Public Engagement During the COVID-19 Pandemic: Natural Language Processing Approach.

机构信息

Department of Communication, Texas A&M University, College Station, TX, United States.

Jack J Valenti School of Communication, University of Houston, Houston, TX, United States.

出版信息

JMIR Public Health Surveill. 2021 Apr 26;7(4):e26720. doi: 10.2196/26720.

Abstract

BACKGROUND

The ongoing COVID-19 pandemic is characterized by different morbidity and mortality rates across different states, cities, rural areas, and diverse neighborhoods. The absence of a national strategy for battling the pandemic also leaves state and local governments responsible for creating their own response strategies and policies.

OBJECTIVE

This study examines the content of COVID-19-related tweets posted by public health agencies in Texas and how content characteristics can predict the level of public engagement.

METHODS

All COVID-19-related tweets (N=7269) posted by Texas public agencies during the first 6 months of 2020 were classified in terms of each tweet's functions (whether the tweet provides information, promotes action, or builds community), the preventative measures mentioned, and the health beliefs discussed, by using natural language processing. Hierarchical linear regressions were conducted to explore how tweet content predicted public engagement.

RESULTS

The information function was the most prominent function, followed by the action or community functions. Beliefs regarding susceptibility, severity, and benefits were the most frequently covered health beliefs. Tweets that served the information or action functions were more likely to be retweeted, while tweets that served the action and community functions were more likely to be liked. Tweets that provided susceptibility information resulted in the most public engagement in terms of the number of retweets and likes.

CONCLUSIONS

Public health agencies should continue to use Twitter to disseminate information, promote action, and build communities. They need to improve their strategies for designing social media messages about the benefits of disease prevention behaviors and audiences' self-efficacy.

摘要

背景

目前的 COVID-19 大流行在不同的州、城市、农村地区和不同社区表现出不同的发病率和死亡率。由于缺乏抗击大流行的国家战略,州和地方政府也负责制定自己的应对战略和政策。

目的

本研究检查了德克萨斯州公共卫生机构发布的与 COVID-19 相关的推文的内容,以及内容特征如何预测公众参与度。

方法

在 2020 年的前 6 个月,使用自然语言处理对德克萨斯州公共机构发布的所有与 COVID-19 相关的推文(N=7269)进行分类,根据每条推文的功能(提供信息、促进行动还是建立社区)、提到的预防措施以及讨论的健康信念进行分类。进行分层线性回归,以探讨推文内容如何预测公众参与度。

结果

信息功能是最突出的功能,其次是行动或社区功能。易感性、严重性和收益方面的信念是最常涉及的健康信念。提供信息或行动功能的推文更有可能被转发,而提供行动和社区功能的推文更有可能被点赞。提供易感性信息的推文在转发和点赞方面获得了最多的公众参与。

结论

公共卫生机构应继续使用 Twitter 传播信息、促进行动和建立社区。他们需要改进关于预防疾病行为的益处和受众自我效能的社交媒体信息设计策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验