Suppr超能文献

利用推文了解社交媒体时代 COVID-19 相关健康信念如何受到影响:推特数据分析研究。

Using Tweets to Understand How COVID-19-Related Health Beliefs Are Affected in the Age of Social Media: Twitter Data Analysis Study.

机构信息

Department of Preventive Medicine, Northwestern University, Chicago, IL, United States.

Department of Neurology, Northwestern Universtity, Chicago, IL, United States.

出版信息

J Med Internet Res. 2021 Feb 22;23(2):e26302. doi: 10.2196/26302.

Abstract

BACKGROUND

The emergence of SARS-CoV-2 (ie, COVID-19) has given rise to a global pandemic affecting 215 countries and over 40 million people as of October 2020. Meanwhile, we are also experiencing an infodemic induced by the overabundance of information, some accurate and some inaccurate, spreading rapidly across social media platforms. Social media has arguably shifted the information acquisition and dissemination of a considerably large population of internet users toward higher interactivities.

OBJECTIVE

This study aimed to investigate COVID-19-related health beliefs on one of the mainstream social media platforms, Twitter, as well as potential impacting factors associated with fluctuations in health beliefs on social media.

METHODS

We used COVID-19-related posts from the mainstream social media platform Twitter to monitor health beliefs. A total of 92,687,660 tweets corresponding to 8,967,986 unique users from January 6 to June 21, 2020, were retrieved. To quantify health beliefs, we employed the health belief model (HBM) with four core constructs: perceived susceptibility, perceived severity, perceived benefits, and perceived barriers. We utilized natural language processing and machine learning techniques to automate the process of judging the conformity of each tweet with each of the four HBM constructs. A total of 5000 tweets were manually annotated for training the machine learning architectures.

RESULTS

The machine learning classifiers yielded areas under the receiver operating characteristic curves over 0.86 for the classification of all four HBM constructs. Our analyses revealed a basic reproduction number R of 7.62 for trends in the number of Twitter users posting health belief-related content over the study period. The fluctuations in the number of health belief-related tweets could reflect dynamics in case and death statistics, systematic interventions, and public events. Specifically, we observed that scientific events, such as scientific publications, and nonscientific events, such as politicians' speeches, were comparable in their ability to influence health belief trends on social media through a Kruskal-Wallis test (P=.78 and P=.92 for perceived benefits and perceived barriers, respectively).

CONCLUSIONS

As an analogy of the classic epidemiology model where an infection is considered to be spreading in a population with an R greater than 1, we found that the number of users tweeting about COVID-19 health beliefs was amplifying in an epidemic manner and could partially intensify the infodemic. It is "unhealthy" that both scientific and nonscientific events constitute no disparity in impacting the health belief trends on Twitter, since nonscientific events, such as politicians' speeches, might not be endorsed by substantial evidence and could sometimes be misleading.

摘要

背景

SARS-CoV-2(即 COVID-19)的出现引发了一场全球大流行,截至 2020 年 10 月,已影响 215 个国家和超过 4000 万人。与此同时,我们也正在经历由信息过剩引起的信息疫情,这些信息有些准确,有些不准确,迅速在社交媒体平台上传播。社交媒体可以说已经改变了相当一部分互联网用户获取和传播信息的方式,使其互动性更高。

目的

本研究旨在调查主流社交媒体平台 Twitter 上与 COVID-19 相关的健康信念,以及与社交媒体上健康信念波动相关的潜在影响因素。

方法

我们使用主流社交媒体平台 Twitter 上的 COVID-19 相关帖子来监测健康信念。从 2020 年 1 月 6 日至 6 月 21 日,共检索到 92687660 条推文,对应 8967986 个唯一用户。为了量化健康信念,我们采用了健康信念模型(HBM),其中包含四个核心结构:感知易感性、感知严重性、感知益处和感知障碍。我们利用自然语言处理和机器学习技术,自动判断每条推文与 HBM 四个结构中的每一个结构的一致性。我们手动标注了 5000 条推文来训练机器学习架构。

结果

机器学习分类器对所有四个 HBM 结构的分类,其接收者操作特征曲线下的面积均超过 0.86。我们的分析表明,在研究期间,发布与健康信念相关内容的 Twitter 用户数量的基本繁殖数 R 为 7.62。与健康信念相关的推文数量的波动可以反映病例和死亡统计数据、系统干预措施和公共事件的动态。具体来说,我们观察到科学事件,如科学出版物,和非科学事件,如政客的演讲,在通过克鲁斯卡尔-沃利斯检验(感知益处和感知障碍的 P 值分别为 0.78 和 0.92)比较时,都具有同等影响社交媒体健康信念趋势的能力。

结论

作为经典流行病学模型的类比,其中感染被认为是在 R 大于 1 的人群中传播,我们发现,在 Twitter 上发布 COVID-19 健康信念的用户数量呈指数级增长,这可能会加剧信息疫情。科学和非科学事件在影响 Twitter 上的健康信念趋势方面没有差异,这是“不健康的”,因为非科学事件,如政客的演讲,可能没有实质性证据支持,有时可能会产生误导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2098/7901597/eb2ac9b4096a/jmir_v23i2e26302_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验