Suppr超能文献

胆固醇对乳酸乳球菌支链氨基酸转运系统的影响。

Effect of cholesterol on the branched-chain amino acid transport system of Streptococcus cremoris.

作者信息

Zheng T, Driessen A J, Konings W N

机构信息

Department of Microbiology, University of Groningen, Haren, The Netherlands.

出版信息

J Bacteriol. 1988 Jul;170(7):3194-8. doi: 10.1128/jb.170.7.3194-3198.1988.

Abstract

The effect of cholesterol on the activity of the branched-chain amino acid transport system of Streptococcus cremoris was studied in membrane vesicles of S. cremoris fused with liposomes made of egg yolk phosphatidylcholine, soybean phosphatidylethanolamine, and various amounts of cholesterol. Cholesterol reduced both counterflow and proton motive force-driven leucine transport. Kinetic analysis of proton motive force-driven leucine uptake revealed that the Vmax decreased with an increasing cholesterol/phospholipid ratio while the Kt remained unchanged. The leucine transport activity decreased with the membrane fluidity, as determined by steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene incorporated into the fused membranes, suggesting that the membrane fluidity controls the activity of the branched-chain amino acid carrier.

摘要

在与由蛋黄磷脂酰胆碱、大豆磷脂酰乙醇胺以及不同量胆固醇制成的脂质体融合的嗜热链球菌膜囊泡中,研究了胆固醇对嗜热链球菌支链氨基酸转运系统活性的影响。胆固醇降低了逆向流动和质子动力驱动的亮氨酸转运。对质子动力驱动的亮氨酸摄取进行动力学分析表明,随着胆固醇/磷脂比例的增加,Vmax降低而Kt保持不变。如通过掺入融合膜中的1,6 - 二苯基 - 1,3,5 - 己三烯的稳态荧光偏振所测定的,亮氨酸转运活性随膜流动性降低,这表明膜流动性控制着支链氨基酸载体的活性。

相似文献

1
Effect of cholesterol on the branched-chain amino acid transport system of Streptococcus cremoris.
J Bacteriol. 1988 Jul;170(7):3194-8. doi: 10.1128/jb.170.7.3194-3198.1988.
2
Transport of branched-chain amino acids in membrane vesicles of Streptococcus cremoris.
J Bacteriol. 1987 Nov;169(11):5193-200. doi: 10.1128/jb.169.11.5193-5200.1987.
3
Lipid requirement of the branched-chain amino acid transport system of Streptococcus cremoris.
Biochemistry. 1988 Feb 9;27(3):865-72. doi: 10.1021/bi00403a005.
5
Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis.
Biochim Biophys Acta. 1991 Jun 18;1065(2):203-12. doi: 10.1016/0005-2736(91)90231-v.
7
Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris.
Eur J Biochem. 1986 Feb 3;154(3):617-24. doi: 10.1111/j.1432-1033.1986.tb09443.x.
8
Branched-chain amino acid transport in Streptococcus mutans Ingbritt.
Oral Microbiol Immunol. 1993 Jun;8(3):167-71. doi: 10.1111/j.1399-302x.1993.tb00660.x.

引用本文的文献

1
Differential effects of permeating and nonpermeating solutes on the fatty acid composition of Pseudomonas putida.
Appl Environ Microbiol. 2000 Jun;66(6):2414-21. doi: 10.1128/AEM.66.6.2414-2421.2000.
2
Mechanisms of membrane toxicity of hydrocarbons.
Microbiol Rev. 1995 Jun;59(2):201-22. doi: 10.1128/mr.59.2.201-222.1995.
3
Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria.
Antonie Van Leeuwenhoek. 1989 Aug;56(2):139-60. doi: 10.1007/BF00399978.

本文引用的文献

1
Glucose transport through cell membranes of modified lipid fluidity.
Biochemistry. 1981 Jul 21;20(15):4250-6. doi: 10.1021/bi00518a003.
2
Correlation between molecular shape and hexagonal HII phase promoting ability of sterols.
FEBS Lett. 1982 Jun 21;143(1):133-6. doi: 10.1016/0014-5793(82)80289-5.
3
Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris.
J Bacteriol. 1982 Feb;149(2):733-8. doi: 10.1128/jb.149.2.733-738.1982.
4
The fluidity of cell membranes and its regulation.
Prog Biophys Mol Biol. 1981;38(1):1-104. doi: 10.1016/0079-6107(81)90011-0.
8
Fluorescence method for measuring the kinetics of fusion between biological membranes.
Biochemistry. 1984 Nov 20;23(24):5675-81. doi: 10.1021/bi00319a002.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验