Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Nano Lett. 2021 Apr 28;21(8):3487-3494. doi: 10.1021/acs.nanolett.1c00161. Epub 2021 Apr 13.
Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.
受激发射耗散(STED)纳米显微镜在实现亚 50nm 高空间分辨率的亚细胞活细胞成像方面发挥着关键作用。为了避免再激发,STED 波长必须调谐到荧光探针发射光谱的红色尾部,这导致了可能损害细胞活力和功能的高耗散激光功率。在此,通过具有 150nm 巨大斯托克斯位移的高发射率硅壳核壳有机纳米粒子(CSONPs),将 STED 波长移至 660nm 的发射最大值,实现了超低功率 STED。与发射红色尾部相比,受激发射截面增加了约 20 倍。我们的 CSONP 的测量饱和强度和横向分辨率分别为 0.0085MWcm 和 25nm。更重要的是,用 37nm 的分辨率对活细胞中溶酶体融合-裂变过程进行了长达 3 分钟以上的动态超分辨率成像。