Suppr超能文献

用于具有任意缩放因子的单图像超分辨率的双边上采样网络

Bilateral Upsampling Network for Single Image Super-Resolution With Arbitrary Scaling Factors.

作者信息

Zhang Menglei, Ling Qiang

出版信息

IEEE Trans Image Process. 2021;30:4395-4408. doi: 10.1109/TIP.2021.3071708. Epub 2021 Apr 21.

Abstract

Single Image Super-Resolution (SISR) is essential for many computer vision tasks. In some real-world applications, such as object recognition and image classification, the captured image size can be arbitrary while the required image size is fixed, which necessitates SISR with arbitrary scaling factors. It is a challenging problem to take a single model to accomplish the SISR task under arbitrary scaling factors. To solve that problem, this paper proposes a bilateral upsampling network which consists of a bilateral upsampling filter and a depthwise feature upsampling convolutional layer. The bilateral upsampling filter is made up of two upsampling filters, including a spatial upsampling filter and a range upsampling filter. With the introduction of the range upsampling filter, the weights of the bilateral upsampling filter can be adaptively learned under different scaling factors and different pixel values. The output of the bilateral upsampling filter is then provided to the depthwise feature upsampling convolutional layer, which upsamples the low-resolution (LR) feature map to the high-resolution (HR) feature space depthwisely and well recovers the structural information of the HR feature map. The depthwise feature upsampling convolutional layer can not only efficiently reduce the computational cost of the weight prediction of the bilateral upsampling filter, but also accurately recover the textual details of the HR feature map. Experiments on benchmark datasets demonstrate that the proposed bilateral upsampling network can achieve better performance than some state-of-the-art SISR methods.

摘要

单图像超分辨率(SISR)对于许多计算机视觉任务至关重要。在一些实际应用中,如目标识别和图像分类,捕获的图像大小可以是任意的,而所需的图像大小是固定的,这就需要具有任意缩放因子的SISR。采用单一模型在任意缩放因子下完成SISR任务是一个具有挑战性的问题。为了解决该问题,本文提出了一种双边上采样网络,它由双边上采样滤波器和深度特征上采样卷积层组成。双边上采样滤波器由两个上采样滤波器组成,包括空间上采样滤波器和范围上采样滤波器。通过引入范围上采样滤波器,双边上采样滤波器的权重可以在不同缩放因子和不同像素值下自适应学习。然后将双边上采样滤波器的输出提供给深度特征上采样卷积层,该层将低分辨率(LR)特征图深度上采样到高分辨率(HR)特征空间,并很好地恢复HR特征图的结构信息。深度特征上采样卷积层不仅可以有效降低双边上采样滤波器权重预测的计算成本,还能准确恢复HR特征图的纹理细节。在基准数据集上的实验表明,所提出的双边上采样网络能够比一些当前最先进的SISR方法取得更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验