Suppr超能文献

反馈注意网络用于心脏磁共振成像超分辨率。

Feedback attention network for cardiac magnetic resonance imaging super-resolution.

机构信息

College of Information Management, Nanjing Agricultural University, Nanjing 210095, China.

College of Information Management, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Comput Methods Programs Biomed. 2023 Apr;231:107313. doi: 10.1016/j.cmpb.2022.107313. Epub 2022 Dec 15.

Abstract

BACKGROUND AND OBJECTIVE

Atrial fibrillation (AF) is a common clinical arrhythmia with a high disability and mortality rate. Improving the resolution of atrial structure and its changes in patients with AF is very important for understanding and treating AF.

METHODS

Aiming at the problems of previous deep learning-based image super-resolution (SR) reconstruction methods simply deepening the network, loss of upsampling information, and difficulty in the reconstruction of high-frequency information, we propose the Feedback Attention Network (FBAN) for cardiac magnetic resonance imaging (CMRI) super-resolution. The network comprises a preprocessing module, a multi-scale residual group module, an upsampling module, and a reconstruction module. The preprocessing module uses a convolutional layer to extract shallow features and dilate the number of channels of the feature map. The multi-scale residual group module adds a multi-channel network, a mixed attention mechanism, and a long and short skip connection to expand the receptive field of the feature map, improve the multiplexing of multi-scale features and strengthen the reconstruction of high-frequency information. The upsampling module adopts the sub-pixel method to upsample the feature map to the target image size. The reconstruction module consists of a convolutional layer, which is used to restore the number of channels of the feature map to the original number to obtain the reconstructed high-resolution (HR) image.

RESULTS

Furthermore, the test results on the public dataset of CMRI show that the HR images reconstructed by the FBAN method not only have a good improvement in reconstructed edge and texture information but also have a good improvement in the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) objective evaluation indicators.

CONCLUSION

Compared with the local magnified image, the edge information of the FBAN method reconstructed image has been enhanced, more high-frequency information of the CMRI is restored, the texture details are less lost, and the reconstructed image is less blurry. Overall, the reconstructed image has a lighter feeling of smearing, and the visual experience is more apparent and sharper.

摘要

背景与目的

心房颤动(AF)是一种常见的临床心律失常,具有较高的残疾率和死亡率。提高 AF 患者心房结构及其变化的分辨率,对于理解和治疗 AF 非常重要。

方法

针对以往基于深度学习的图像超分辨率(SR)重建方法简单加深网络、丢失上采样信息以及难以重建高频信息的问题,我们提出了用于心脏磁共振成像(CMRI)超分辨率的反馈注意网络(FBAN)。该网络包括预处理模块、多尺度残差组模块、上采样模块和重建模块。预处理模块使用卷积层提取浅层特征并扩展特征图的通道数量。多尺度残差组模块添加了多通道网络、混合注意机制和长短跳跃连接,以扩大特征图的感受野,提高多尺度特征的复用性,并加强高频信息的重建。上采样模块采用子像素方法对上采样特征图到目标图像大小。重建模块由卷积层组成,用于将特征图的通道数恢复到原始数量,以获得重建的高分辨率(HR)图像。

结果

此外,在 CMRI 的公共数据集上的测试结果表明,FBAN 方法重建的 HR 图像不仅在重建边缘和纹理信息方面有很好的改善,而且在峰值信噪比(PSNR)和结构相似性指数(SSIM)客观评价指标方面也有很好的改善。

结论

与局部放大图像相比,FBAN 方法重建图像的边缘信息得到了增强,更多的 CMRI 高频信息得到了恢复,纹理细节丢失较少,重建图像模糊程度较低。总体而言,重建图像的涂抹感更轻,视觉体验更加明显和清晰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验