Suppr超能文献

墨西哥养老基金的多阶段分配问题。

Multistage allocation problem for Mexican pension funds.

机构信息

Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México.

Unidad Monterrey, Centro de Investigación en Matemáticas, Apodaca, Nuevo León, México.

出版信息

PLoS One. 2021 Apr 13;16(4):e0249857. doi: 10.1371/journal.pone.0249857. eCollection 2021.

Abstract

The problem of multistage allocation is solved using the Target Date Fund (TDF) strategy subject to a set of restrictions which model the latest regulatory framework of the Mexican pension system. The investment trajectory or glide-path for a representative set of 14 assets of heterogeneous characteristics is studied during a 161 quarters long horizon. The expected returns are estimated by the GARCH(1,1), EGARCH(1,1), GJR-GARCH(1,1) models, and a stationary block bootstrap model is used as a benchmark for comparison. A fixed historical covariance matrix and a multi-period estimation of DCC-GARCH(1,1) are also considered as inputs of the objective function. Forecasts are evaluated through their asymmetric dependencies as quantified by the transfer entropy measure. In general, we find very similar glide-paths so that the overall structure of the investment is maintained and does not rely on the particular forecasting model. However, the GARCH(1,1) under a fixed historical covariance matrix exhibits the highest Sharpe ratio and in this sense represents the best trade-off between wealth and risk. As expected, the initial stages of the obtained glide-paths are initially dominated by risky assets and gradually transition into bonds towards the end oof the trajectory. Overall, the methodology proposed here is computationally efficient and displays the desired properties of a TDF strategy in realistic settings.

摘要

多阶段分配问题使用目标日期基金(TDF)策略解决,该策略受到一组限制的约束,这些限制模拟了墨西哥养老金系统的最新监管框架。在 161 个季度的长时间段内,研究了一组具有异质特征的 14 种代表性资产的投资轨迹或滑行路径。通过 GARCH(1,1)、EGARCH(1,1)、GJR-GARCH(1,1)模型估计预期回报,并使用平稳块引导模型作为基准进行比较。还考虑了固定历史协方差矩阵和多期 DCC-GARCH(1,1)估计作为目标函数的输入。通过转移熵度量量化的不对称依赖性来评估预测。一般来说,我们发现非常相似的滑行路径,因此投资的整体结构得以保持,并且不依赖于特定的预测模型。然而,固定历史协方差矩阵下的 GARCH(1,1)表现出最高的夏普比率,因此在财富和风险之间实现了最佳权衡。正如预期的那样,获得的滑行路径的初始阶段最初由风险资产主导,并逐渐过渡到轨迹末端的债券。总体而言,这里提出的方法在计算上效率高,并在现实环境中显示出 TDF 策略的所需属性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c25/8043405/9de1bdae64ef/pone.0249857.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验