Suppr超能文献

基于 EEG 跨频耦合和随机森林模型的自动睡眠障碍检测。

An automatic sleep disorder detection based on EEG cross-frequency coupling and random forest model.

机构信息

Integrative Neuroimaging Lab, 55133 Thessaloniki, Greece.

1st Department of Neurology, G.H. 'AHEPA', School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece.

出版信息

J Neural Eng. 2021 May 24;18(4). doi: 10.1088/1741-2552/abf773.

Abstract

. Sleep disorders are medical disorders of a subject's sleep architecture and based on their severity, they can interfere with mental, emotional and physical functioning. The most common ones are insomnia, narcolepsy, sleep apnea, bruxism, etc. There is an increased risk of developing sleep disorders in elderly like insomnia, periodic leg movements, rapid eye movement behavior disorders, sleep disorder breathing, etc. Consequently, their accurate diagnosis and classification are important steps towards an early stage treatment that could save the life of a patient.. The electroencephalographic (EEG) signal is the most sensitive and important biosignal, which is able to capture the brain sleep activity that is sensitive to sleep. In this study, we attempt to analyze EEG sleep activity via complementary cross-frequency coupling (CFC) estimates, which further feed a classifier, aiming to discriminate sleep disorders. We adopted an open EEG database with recordings that were grouped into seven sleep disorders and a healthy control. The EEG brain activity from common sensors has been analyzed with two basic types of CFC.. Finally, a random forest (RF) classification model was built on CFC patterns, which were extracted from non-cyclic alternating pattern epochs. Our RFmodel achieved a 74% multiclass accuracy. Both types of CFC, phase-to-amplitude and amplitude-amplitude coupling patterns contribute to the accuracy of the RF model, thus supporting their complementary information.. CFC patterns, in conjunction with the RF classifier proved a valuable biomarker for the classification of sleep disorders.

摘要

睡眠障碍是主体睡眠结构的医学障碍,根据其严重程度,它们可能会干扰精神、情感和身体功能。最常见的是失眠、嗜睡症、睡眠呼吸暂停、磨牙症等。老年人患睡眠障碍的风险增加,如失眠、周期性肢体运动、快速眼动行为障碍、睡眠呼吸障碍等。因此,准确诊断和分类是早期治疗的重要步骤,这可能会挽救患者的生命。

脑电图(EEG)信号是最敏感和最重要的生物信号,它能够捕捉对睡眠敏感的大脑睡眠活动。在这项研究中,我们尝试通过互补的交叉频率耦合(CFC)估计来分析 EEG 睡眠活动,进一步将其输入分类器,旨在区分睡眠障碍。我们采用了一个公开的 EEG 数据库,其中的记录被分为七种睡眠障碍和一个健康对照组。对来自常见传感器的 EEG 大脑活动进行了两种基本类型的 CFC 分析。

最后,在非循环交替模式(CFC)时期提取 CFC 模式,并在其上构建随机森林(RF)分类模型。我们的 RF 模型达到了 74%的多类准确率。这两种类型的 CFC,相位到振幅和振幅-振幅耦合模式,都有助于 RF 模型的准确性,因此支持它们的互补信息。

CFC 模式与 RF 分类器相结合,被证明是睡眠障碍分类的有价值的生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验