Suppr超能文献

一种基于多类脑电的新型睡眠分期分类系统。

A Novel Multi-Class EEG-Based Sleep Stage Classification System.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):84-95. doi: 10.1109/TNSRE.2017.2776149.

Abstract

Sleep stage classification is one of the most critical steps in effective diagnosis and the treatment of sleep-related disorders. Visual inspection undertaken by sleep experts is a time-consuming and burdensome task. A computer-assisted sleep stage classification system is thus essential for both sleep-related disorders diagnosis and sleep monitoring. In this paper, we propose a system to classify the wake and sleep stages with high rates of sensitivity and specificity. The EEG signals of 25 subjects with suspected sleep-disordered breathing, and the EEG signals of 20 healthy subjects from three data sets are used. Every EEG epoch is decomposed into eight subband epochs each of which has a frequency band pertaining to one EEG rhythm (i.e., delta, theta, alpha, sigma, beta 1, beta 2, gamma 1, or gamma 2). Thirteen features are extracted from each subband epoch. Therefore, 104 features are totally obtained for every EEG epoch. The Kruskal-Wallis test is used to examine the significance of the features. Non-significant features are discarded. The minimal-redundancy-maximal-relevance feature selection algorithm is then used to eliminate redundant and irrelevant features. The features selected are classified by a random forest classifier. To set the system parameters and to evaluate the system performance, nested 5-fold cross-validation and subject cross-validation are performed. The performance of our proposed system is evaluated for different multi-class classification problems. The minimum overall accuracy rates obtained are 95.31% and 86.64% for nested 5-fold and subject cross-validation, respectively. The system performance is promising in terms of the accuracy, sensitivity, and specificity rates compared with the ones of the state-of-the-art systems. The proposed system can be used in health care applications with the aim of improving sleep stage classification.

摘要

睡眠阶段分类是有效诊断和治疗睡眠障碍的最关键步骤之一。由睡眠专家进行的目视检查是一项耗时且繁琐的任务。因此,对于睡眠障碍的诊断和睡眠监测,都需要一个计算机辅助的睡眠阶段分类系统。在本文中,我们提出了一个能够以高灵敏度和特异性对清醒和睡眠阶段进行分类的系统。使用了三个数据集的 25 名疑似睡眠呼吸障碍患者和 20 名健康受试者的 EEG 信号。每个 EEG 时段被分解为 8 个子带时段,每个子带时段都具有与一个 EEG 节律相关的频段(即,δ、θ、α、σ、β 1、β 2、γ 1 或 γ 2)。从每个子带时段提取 13 个特征。因此,每个 EEG 时段总共获得 104 个特征。Kruskal-Wallis 检验用于检验特征的显著性。不显著的特征被丢弃。然后使用最小冗余最大相关性特征选择算法消除冗余和不相关的特征。选择的特征由随机森林分类器进行分类。为了设置系统参数和评估系统性能,进行了嵌套 5 折交叉验证和受试者交叉验证。针对不同的多类分类问题评估了我们提出的系统的性能。对于嵌套 5 折和受试者交叉验证,获得的总体准确性最低分别为 95.31%和 86.64%。与最先进的系统相比,该系统在准确性、灵敏度和特异性方面的性能具有很大的优势。所提出的系统可以用于医疗保健应用,旨在改善睡眠阶段分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验