Suppr超能文献

Rac1 的激活可以产生无模板的片状膜皱襞。

Rac1 activation can generate untemplated, lamellar membrane ruffles.

机构信息

Single Molecule Science, University of New South Wales, Sydney, Australia.

Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.

出版信息

BMC Biol. 2021 Apr 13;19(1):72. doi: 10.1186/s12915-021-00997-3.

Abstract

BACKGROUND

Membrane protrusions that occur on the dorsal surface of a cell are an excellent experimental system to study actin machinery at work in a living cell. Small GTPase Rac1 controls the membrane protrusions that form and encapsulate extracellular volumes to perform pinocytic or phagocytic functions.

RESULTS

Here, capitalizing on rapid volumetric imaging capabilities of lattice light-sheet microscopy (LLSM), we describe optogenetic approaches using photoactivable Rac1 (PA-Rac1) for controlled ruffle generation. We demonstrate that PA-Rac1 activation needs to be continuous, suggesting a threshold local concentration for sustained actin polymerization leading to ruffling. We show that Rac1 activation leads to actin assembly at the dorsal surface of the cell membrane that result in sheet-like protrusion formation without any requirement of a template. Further, this approach can be used to study the complex morpho-dynamics of the protrusions or to investigate specific proteins that may be enriched in the ruffles. Deactivating PA-Rac1 leads to complex contractile processes resulting in formation of macropinosomes. Using multicolour imaging in combination with these approaches, we find that Myo1e specifically is enriched in the ruffles.

CONCLUSIONS

Combining LLSM and optogenetics enables superior spatial and temporal control for studying such dynamic mechanisms. Demonstrated here, the techniques implemented provide insight into the complex nature of the molecular interplay involved in dynamic actin machinery, revealing that Rac1 activation can generate untemplated, lamellar protrusions.

摘要

背景

发生在细胞背侧表面的膜突起是研究活细胞中肌动蛋白机制的绝佳实验系统。小 GTP 酶 Rac1 控制形成并包裹细胞外体积的膜突起,以执行胞饮或吞噬功能。

结果

在这里,利用晶格光片显微镜(LLSM)的快速体积成像能力,我们描述了使用光激活 Rac1(PA-Rac1)进行受控皱襞生成的光遗传学方法。我们证明 PA-Rac1 的激活需要连续进行,这表明持续肌动蛋白聚合导致皱襞形成的局部浓度存在阈值。我们表明 Rac1 的激活导致细胞细胞膜背侧表面的肌动蛋白组装,从而导致片状突起的形成,而不需要模板。此外,这种方法可用于研究突起的复杂形态动力学,或研究可能在皱襞中富集的特定蛋白质。失活的 PA-Rac1 导致复杂的收缩过程,导致形成大胞饮泡。通过结合这些方法进行多色成像,我们发现 Myo1e 特异性富集在皱襞中。

结论

将 LLSM 和光遗传学相结合,可实现对这些动态机制进行卓越的时空控制。这里演示的技术提供了对涉及动态肌动蛋白机制的分子相互作用的复杂性质的深入了解,表明 Rac1 的激活可以产生无模板的、片状的突起。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde0/8042924/a1c08cfb4c8e/12915_2021_997_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验