Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Center for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
Genome Biol. 2021 Apr 13;22(1):103. doi: 10.1186/s13059-021-02323-0.
Whole genome duplication (WGD) events have played a major role in eukaryotic genome evolution, but the consequence of these extreme events in adaptive genome evolution is still not well understood. To address this knowledge gap, we used a comparative phylogenetic model and transcriptomic data from seven species to infer selection on gene expression in duplicated genes (ohnologs) following the salmonid WGD 80-100 million years ago.
We find rare cases of tissue-specific expression evolution but pervasive expression evolution affecting many tissues, reflecting strong selection on maintenance of genome stability following genome doubling. Ohnolog expression levels have evolved mostly asymmetrically, by diverting one ohnolog copy down a path towards lower expression and possible pseudogenization. Loss of expression in one ohnolog is significantly associated with transposable element insertions in promoters and likely driven by selection on gene dosage including selection on stoichiometric balance. We also find symmetric expression shifts, and these are associated with genes under strong evolutionary constraints such as ribosome subunit genes. This possibly reflects selection operating to achieve a gene dose reduction while avoiding accumulation of "toxic mutations". Mechanistically, ohnolog regulatory divergence is dictated by the number of bound transcription factors in promoters, with transposable elements being one likely source of novel binding sites driving tissue-specific gains in expression.
Our results imply pervasive adaptive expression evolution following WGD to overcome the immediate challenges posed by genome doubling and to exploit the long-term genetic opportunities for novel phenotype evolution.
全基因组复制(WGD)事件在真核生物基因组进化中发挥了重要作用,但这些极端事件在适应性基因组进化中的后果仍不清楚。为了解决这一知识空白,我们使用了一个比较系统发育模型和来自七个物种的转录组数据,推断了 8000 万至 1 亿年前鲑鱼 WGD 后,在基因表达上对复制基因(ohnologs)的选择。
我们发现了组织特异性表达进化的罕见情况,但也存在普遍的表达进化,影响许多组织,反映了基因组加倍后对维持基因组稳定性的强烈选择。ohnolog 的表达水平主要通过不对称进化来演变,即一个 ohnolog 拷贝沿着低表达和可能的假基因化的路径偏离。一个 ohnolog 的表达丧失与启动子中的转座元件插入显著相关,可能是由基因剂量选择驱动的,包括对化学计量平衡的选择。我们还发现了对称的表达变化,这些变化与核糖体亚基等受强烈进化限制的基因有关。这可能反映了选择作用,以达到减少基因剂量的同时避免“毒性突变”的积累。从机制上讲,ohnolog 的调控分歧是由启动子中结合的转录因子数量决定的,转座元件是驱动组织特异性表达增加的新结合位点的一个可能来源。
我们的研究结果表明,WGD 后存在普遍的适应性表达进化,以克服基因组加倍带来的直接挑战,并利用长期的遗传机会来促进新的表型进化。