Seifert Mona, Bera Subhas Chandra, van Nies Pauline, Kirchdoerfer Robert N, Shannon Ashleigh, Le Thi-Tuyet-Nhung, Meng Xiangzhi, Xia Hongjie, Wood James M, Harris Lawrence D, Papini Flávia S, Arnold Jamie J, Almo Steven C, Grove Tyler L, Shi Pei-Yong, Xiang Yan, Canard Bruno, Depken Martin, Cameron Craig E, Dulin David
Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany.
Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706.
bioRxiv. 2021 Apr 8:2020.08.06.240325. doi: 10.1101/2020.08.06.240325.
The nucleotide analog Remdesivir (RDV) is the only FDA-approved antiviral therapy to treat infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The physical basis for efficient utilization of RDV by SARS-CoV-2 polymerase is unknown. Here, we characterize the impact of RDV and other nucleotide analogs on RNA synthesis by the polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. The location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We reveal that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into deep backtrack, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this nucleotide analog well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.
We revise Remdesivir's mechanism of action and reveal SARS-CoV-2 ability to evade interferon-induced antiviral ddhCTP.
核苷酸类似物瑞德西韦(RDV)是美国食品药品监督管理局(FDA)批准的唯一用于治疗严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的抗病毒疗法。SARS-CoV-2聚合酶有效利用RDV的物理基础尚不清楚。在此,我们使用高通量、单分子磁镊平台,表征了RDV和其他核苷酸类似物对该聚合酶RNA合成的影响。核糖或碱基中修饰的位置决定了其掺入所使用的催化途径。我们发现,掺入RDV不会终止病毒RNA合成,但会导致聚合酶深度回溯,这在传统的整体分析中可能表现为终止。尽管聚合酶能很好地掺入这种核苷酸类似物,但SARS-CoV-2能够逃避蝰蛇毒蛋白抗病毒蛋白的内源性合成产物ddhCTP。
我们修正了瑞德西韦的作用机制,并揭示了SARS-CoV-2逃避干扰素诱导的抗病毒ddhCTP的能力。