Suppr超能文献

利用自然语言处理技术对放射科报告进行分析,以探讨 COVID-19 大流行对骨折发病率和年龄分布的影响。

Natural language processing of radiology reports to investigate the effects of the COVID-19 pandemic on the incidence and age distribution of fractures.

机构信息

Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131, Mainz, Germany.

Empolis Information Management, Kaiserslautern, Germany.

出版信息

Skeletal Radiol. 2022 Feb;51(2):375-380. doi: 10.1007/s00256-021-03760-5. Epub 2021 Apr 13.

Abstract

OBJECTIVE

During the COVID-19 pandemic, the number of patients presenting in hospitals because of emergency conditions decreased. Radiology is thus confronted with the effects of the pandemic. The aim of this study was to use natural language processing (NLP) to automatically analyze the number and distribution of fractures during the pandemic and in the 5 years before the pandemic.

MATERIALS AND METHODS

We used a pre-trained commercially available NLP engine to automatically categorize 5397 radiological reports of radiographs (hand/wrist, elbow, shoulder, ankle, knee, pelvis/hip) within a 6-week period from March to April in 2015-2020 into "fracture affirmed" or "fracture not affirmed." The NLP engine achieved an F score of 0.81 compared to human annotators.

RESULTS

In 2020, we found a significant decrease of fractures in general (p < 0.001); the average number of fractures in 2015-2019 was 295, whereas it was 233 in 2020. In children and adolescents (p < 0.001), and in adults up to 65 years (p = 0.006), significantly fewer fractures were reported in 2020. The number of fractures in the elderly did not change (p = 0.15). The number of hand/wrist fractures (p < 0.001) and fractures of the elbow (p < 0.001) was significantly lower in 2020 compared with the average in the years 2015-2019.

CONCLUSION

NLP can be used to identify relevant changes in the number of pathologies as shown here for the use case fracture detection. This may trigger root cause analysis and enable automated real-time monitoring in radiology.

摘要

目的

在 COVID-19 大流行期间,因紧急情况到医院就诊的患者数量有所减少。放射科因此受到大流行的影响。本研究旨在使用自然语言处理 (NLP) 自动分析大流行期间和大流行前 5 年的骨折数量和分布。

材料和方法

我们使用经过预训练的商业 NLP 引擎,在 2015 年至 2020 年的 3 月至 4 月的 6 周内,自动将 5397 份手部/腕部、肘部、肩部、踝部、膝部、骨盆/髋部的放射照片的放射报告(手腕/手部、肘部、肩部、踝部、膝部、骨盆/髋部)分为“骨折证实”或“骨折未证实”。与人工注释者相比,NLP 引擎的 F 得分为 0.81。

结果

2020 年,我们发现总体骨折数量明显减少(p<0.001);2015-2019 年平均骨折数为 295 例,而 2020 年为 233 例。在儿童和青少年(p<0.001)以及 65 岁以下的成年人(p=0.006)中,2020 年报告的骨折明显减少。老年人的骨折数量没有变化(p=0.15)。2020 年手部/腕部骨折(p<0.001)和肘部骨折(p<0.001)的数量明显低于 2015-2019 年的平均水平。

结论

NLP 可用于识别病理学数量的相关变化,如这里用于骨折检测的用例。这可能会引发根本原因分析,并能够在放射科进行自动实时监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db2e/8692276/7fb1b5bf9c1e/256_2021_3760_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验