Jorg Tobias, Kämpgen Benedikt, Feiler Dennis, Müller Lukas, Düber Christoph, Mildenberger Peter, Jungmann Florian
Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckst. 1, 55131, Mainz, Germany.
Empolis Information Management GmbH, Kaiserslautern, Germany.
Insights Imaging. 2023 Mar 16;14(1):47. doi: 10.1186/s13244-023-01392-y.
Structured reporting (SR) is recommended in radiology, due to its advantages over free-text reporting (FTR). However, SR use is hindered by insufficient integration of speech recognition, which is well accepted among radiologists and commonly used for unstructured FTR. SR templates must be laboriously completed using a mouse and keyboard, which may explain why SR use remains limited in clinical routine, despite its advantages. Artificial intelligence and related fields, like natural language processing (NLP), offer enormous possibilities to facilitate the imaging workflow. Here, we aimed to use the potential of NLP to combine the advantages of SR and speech recognition.
We developed a reporting tool that uses NLP to automatically convert dictated free text into a structured report. The tool comprises a task-oriented dialogue system, which assists the radiologist by sending visual feedback if relevant findings are missed. The system was developed on top of several NLP components and speech recognition. It extracts structured content from dictated free text and uses it to complete an SR template in RadLex terms, which is displayed in its user interface. The tool was evaluated for reporting of urolithiasis CTs, as a use case. It was tested using fictitious text samples about urolithiasis, and 50 original reports of CTs from patients with urolithiasis. The NLP recognition worked well for both, with an F1 score of 0.98 (precision: 0.99; recall: 0.96) for the test with fictitious samples and an F1 score of 0.90 (precision: 0.96; recall: 0.83) for the test with original reports.
Due to its unique ability to integrate speech into SR, this novel tool could represent a major contribution to the future of reporting.
由于结构化报告(SR)相较于自由文本报告(FTR)具有优势,因此在放射学中被推荐使用。然而,语音识别的整合不足阻碍了SR的使用,语音识别在放射科医生中广受欢迎,并且常用于非结构化的FTR。SR模板必须使用鼠标和键盘费力地完成,这可能解释了为什么尽管SR有优势,但在临床常规中其使用仍然有限。人工智能及相关领域,如自然语言处理(NLP),为便利成像工作流程提供了巨大的可能性。在此,我们旨在利用NLP的潜力,将SR和语音识别的优势结合起来。
我们开发了一种报告工具,该工具利用NLP将听写的自由文本自动转换为结构化报告。该工具包括一个面向任务的对话系统,如果遗漏了相关发现,该系统会通过发送视觉反馈来协助放射科医生。该系统是在多个NLP组件和语音识别的基础上开发的。它从听写的自由文本中提取结构化内容,并使用该内容以RadLex术语完成SR模板,该模板显示在其用户界面中。作为一个用例,该工具针对尿路结石CT报告进行了评估。它使用关于尿路结石的虚拟文本样本以及50份尿路结石患者的CT原始报告进行了测试。NLP识别在这两种情况下都运行良好,虚拟样本测试的F1分数为0.98(精确率:0.99;召回率:0.96),原始报告测试的F1分数为0.90(精确率:0.96;召回率:0.83)。
由于其将语音集成到SR中的独特能力,这种新型工具可能对未来的报告工作做出重大贡献。