Kurimoto Aiko, Jansonius Ryan P, Huang Aoxue, Marelli Antonio M, Dvorak David J, Hunt Camden, Berlinguette Curtis P
Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada.
Angew Chem Int Ed Engl. 2021 May 17;60(21):11937-11942. doi: 10.1002/anie.202017082. Epub 2021 Apr 14.
An electrocatalytic palladium membrane reactor (ePMR) uses electricity and water to drive hydrogenation without H gas. The device contains a palladium membrane to physically separate the formation of reactive hydrogen atoms from hydrogenation of the unsaturated organic substrate. This separation provides an opportunity to independently measure the hydrogenation reaction at a surface without any competing H activation or proton reduction chemistry. We took advantage of this feature to test how different metal catalysts coated on the palladium membrane affect the rates of hydrogenation of C=O and C=C bonds. Hydrogenation occurs at the secondary metal catalyst and not the underlying palladium membrane. These secondary catalysts also serve to accelerate the reaction and draw a higher flux of hydrogen through the membrane. These results reveal insights into hydrogenation chemistry that would be challenging using thermal or electrochemical hydrogenation experiments.
一种电催化钯膜反应器(ePMR)利用电和水来驱动氢化反应而无需氢气。该装置包含一个钯膜,用于将活性氢原子的形成与不饱和有机底物的氢化反应在物理上分隔开。这种分隔提供了一个机会,可以在没有任何竞争性氢活化或质子还原化学过程的情况下,独立测量表面的氢化反应。我们利用这一特性来测试涂覆在钯膜上的不同金属催化剂如何影响C=O和C=C键的氢化速率。氢化反应发生在二级金属催化剂上,而不是底层的钯膜上。这些二级催化剂还起到加速反应的作用,并促使更高通量的氢通过膜。这些结果揭示了氢化化学的一些见解,而这对于使用热氢化或电化学氢化实验来说具有挑战性。