Suppr超能文献

使用钯膜反应器的电催化氢化

Electrocatalytic Hydrogenation Using Palladium Membrane Reactors.

作者信息

Han Guanqun, Li Guodong, Sun Yujie

机构信息

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States.

出版信息

JACS Au. 2024 Jan 29;4(2):328-343. doi: 10.1021/jacsau.3c00647. eCollection 2024 Feb 26.

Abstract

Hydrogenation is a crucial chemical process employed in a myriad of industries, often facilitated by metals such as Pd, Pt, and Ni as catalysts. Traditional thermocatalytic hydrogenation usually necessitates high temperature and elevated pressure, making the process energy intensive. Electrocatalytic hydrogenation offers an alternative but suffers from issues such as competing H evolution, electrolyte separation, and limited solvent selection. This Perspective introduces the evolution and advantages of the electrocatalytic Pd membrane reactor (ePMR) as a solution to these challenges. ePMR utilizes a Pd membrane to physically separate the electrochemical chamber from the hydrogenation chamber, permitting the use of water as the hydrogen source and eliminating the need for H gas. This setup allows for greater control over reaction conditions, such as solvent and electrolyte selection, while mitigating issues such as low Faradaic efficiency and complex product separation. Several representative hydrogenation reactions (e.g., hydrogenation of C=C, C≡C, C=O, C≡N, and O=O bonds) achieved via ePMR over the past 30 years were concisely discussed to highlight the unique advantages of ePMR. Promising research directions along with the advancement of ePMR for more challenging hydrogenation reactions are also proposed. Finally, we provide a prospect for future development of this distinctive hydrogenation strategy using hydrogen-permeable membrane electrodes.

摘要

氢化是众多行业中使用的关键化学过程,通常由钯、铂和镍等金属作为催化剂来促进。传统的热催化氢化通常需要高温和高压,使得该过程能耗巨大。电催化氢化提供了一种替代方法,但存在析氢竞争、电解质分离和溶剂选择受限等问题。本展望介绍了电催化钯膜反应器(ePMR)作为应对这些挑战的解决方案的发展历程和优势。ePMR利用钯膜将电化学室与氢化室物理分离,允许使用水作为氢源,无需氢气。这种设置可以更好地控制反应条件,如溶剂和电解质的选择,同时缓解诸如法拉第效率低和产物分离复杂等问题。简要讨论了过去30年通过ePMR实现的几种代表性氢化反应(例如,碳碳双键、碳碳三键、碳氧双键、碳氮三键和氧氧键的氢化),以突出ePMR的独特优势。还提出了有前景的研究方向以及ePMR在更具挑战性的氢化反应方面的进展。最后,我们对使用透氢膜电极的这种独特氢化策略的未来发展进行了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63d2/10900496/a9f50e203f32/au3c00647_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验