Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
Sauvage Laboratory for Smart Materials, Shenzhen Bay Laboratory, Harbin Institute of Technology (Shenzhen), No. 9 Duxue Road, Shenzhen 518055, China.
Anal Chem. 2021 Apr 27;93(16):6516-6522. doi: 10.1021/acs.analchem.1c00423. Epub 2021 Apr 14.
Compared with short-lived emission probes featuring fluorescence imaging , the use of phosphorescent probes imparts the advantage of long-lived signal persistence that distinguishes against background fluorescence interference. However, the realization of ultralong organic phosphorescent (UOP) probes with an ultralong emission lifetime in an aqueous medium is still a challenge. Here, we present a rational strategy for obtaining UOP nanoparticles (NPs) in an air-saturated aqueous medium prepared using an organic phosphor (PDBCz) and a surfactant polymer (PVP), named PDBCz@PVP, showing an ultralong emission lifetime of 284.59 ms and a phosphorescence quantum efficiency of 7.6%. The excellent phosphorescence properties and water solubility of PDBCz@PVP make it a promising candidate for biological imaging. The as-prepared PDBCz@PVP NPs possess excellent luminescence intensity as well as illustrious biocompatibility both in vitro and in vivo. We demonstrate their use as an efficient phosphorescent nanoprobe both in living cells and zebrafish by capturing their afterglow emission signals under microscopy observation for the first time, realizing convenient and fast bioimaging with low cost, which allows for anti-fluorescence interference and shows promise for the future theragnostic applications in nanomedicine.
与具有荧光成像功能的短寿命发射探针相比,使用磷光探针具有长寿命信号持续时间的优势,可区分背景荧光干扰。然而,在水相介质中实现具有超长发射寿命的超长有机磷光(UOP)探针仍然是一个挑战。在这里,我们提出了一种在空气饱和的水介质中获得 UOP 纳米粒子(NPs)的合理策略,该策略使用有机磷光体(PDBCz)和表面活性剂聚合物(PVP)制备,命名为 PDBCz@PVP,其发射寿命为 284.59 ms,磷光量子效率为 7.6%。PDBCz@PVP 的优异磷光性能和水溶性使其成为生物成像的有前途的候选者。所制备的 PDBCz@PVP NPs 具有优异的发光强度以及体外和体内出色的生物相容性。我们首次通过在显微镜观察下捕获其余晖发射信号,证明了它们在活细胞和斑马鱼中的高效磷光纳米探针的用途,实现了低成本的方便快速的生物成像,可抗荧光干扰,并有望在纳米医学的未来治疗应用中得到应用。