Department of Mathematics, University of California, Riverside, CA, United States of America.
Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America.
Phys Biol. 2021 May 19;18(4). doi: 10.1088/1478-3975/abf7d8.
Cells and microorganisms adopt various strategies to migrate in response to different environmental stimuli. To date, many modeling research has focused on the crawling-based(Dd) cells migration induced by chemotaxis, yet recent experimental results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow chemoattractant signals. In this paper, we develop a modeling framework to investigate the chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce chemoattractant signals that attract the Dd cell. We use theto generate Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh based finite volume method to solve the reaction-diffusion-convection equation. Using the computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the predator Dd cell.
细胞和微生物会采用各种策略来迁移,以响应不同的环境刺激。迄今为止,许多建模研究都集中在趋化性诱导的基于爬行的(Dd)细胞迁移上,然而最近的实验结果表明,即使没有与底物的粘附或接触,Dd 细胞仍然可以游动以追随化学引诱剂信号。在本文中,我们开发了一个建模框架来研究趋化性诱导的阿米巴样细胞游动动力学。一个最小的游动系统由一个可变形的 Dd 阿米巴样细胞和一个稀细菌悬浮液组成,细菌产生化学引诱剂信号来吸引 Dd 细胞。我们使用来生成 Dd 细胞变形,并求解由此产生的低雷诺数流,使用基于移动网格的有限体积法来求解反应-扩散-对流方程。使用计算模型,我们表明趋化性引导游动的 Dd 细胞跟随并捕获细菌,而另一方面,细菌的流动感可能有助于细菌逃避捕食性的 Dd 细胞。