Division of Experimental Clinical Research, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
mSphere. 2021 Apr 14;6(2):e01024-20. doi: 10.1128/mSphere.01024-20.
The multimeric matrix (M) protein of clinically relevant paramyxoviruses orchestrates assembly and budding activity of viral particles at the plasma membrane (PM). We identified within the canine distemper virus (CDV) M protein two microdomains, potentially assuming α-helix structures, which are essential for membrane budding activity. Remarkably, while two rationally designed microdomain M mutants (E89R, microdomain 1 and L239D, microdomain 2) preserved proper folding, dimerization, interaction with the nucleocapsid protein, localization at and deformation of the PM, the virus-like particle formation, as well as production of infectious virions (as monitored using a membrane budding-complementation system), were, in sharp contrast, strongly impaired. Of major importance, raster image correlation spectroscopy (RICS) revealed that both microdomains contributed to finely tune M protein mobility specifically at the PM. Collectively, our data highlighted the cornerstone membrane budding-priming activity of two spatially discrete M microdomains, potentially by coordinating the assembly of productive higher oligomers at the PM. Despite the availability of efficient vaccines, morbilliviruses (e.g., canine distemper virus [CDV] and measles virus [MeV]) still cause major health impairments. Although antivirals may support vaccination campaigns, approved inhibitors are to date still lacking. Targeting late stages of the viral life cycle (i.e., the cell exit system) represents a viable option to potentially counteract morbilliviral infections. The matrix (M) protein of morbillivirus is a major contributor to membrane budding activity and is assumed to assemble into dimers that further associate to form higher oligomers. Here, we rationally engineered M protein variants with modifications in two microdomains that potentially locate at dimer-dimer interfaces. Our results spotlight the cornerstone impact of both microdomains in membrane budding activity and further suggest a role of finely tuned high-order oligomer formation in regulating late stages of cell exit. Collectively, our findings highlight two microdomains in the morbilliviral M protein as novel attractive targets for drug design.
临床相关副黏病毒的多聚体基质(M)蛋白在质膜(PM)上协调病毒颗粒的组装和出芽活动。我们在犬瘟热病毒(CDV)M 蛋白中鉴定出两个微域,它们可能具有α-螺旋结构,对于膜出芽活性是必不可少的。值得注意的是,虽然两个合理设计的微域 M 突变体(E89R,微域 1 和 L239D,微域 2)保留了正确的折叠、二聚化、与核衣壳蛋白的相互作用、在 PM 上的定位和变形、病毒样颗粒的形成以及感染性病毒粒子的产生(如使用膜出芽互补系统监测),但形成强烈受损。更为重要的是,光栅图像相关光谱(RICS)显示,两个微域都有助于精细调节 M 蛋白在 PM 处的流动性。总的来说,我们的数据强调了两个空间离散的 M 微域在膜出芽引发中的基石作用,可能通过协调在 PM 处形成有活力的更高寡聚物组装。尽管有有效的疫苗,但麻疹病毒(如犬瘟热病毒 [CDV] 和麻疹病毒 [MeV])仍会导致严重的健康损害。尽管抗病毒药物可能支持疫苗接种运动,但迄今为止,批准的抑制剂仍然缺乏。针对病毒生命周期的晚期(即细胞出口系统)是一种可行的选择,可以潜在地对抗麻疹病毒感染。麻疹病毒的基质(M)蛋白是膜出芽活性的主要贡献者,假定其组装成二聚体,然后进一步缔合成更高的寡聚物。在这里,我们通过在两个可能位于二聚体-二聚体界面的微域中进行修饰,合理地设计了 M 蛋白变体。我们的结果突出了这两个微域在膜出芽活性中的基石作用,并进一步表明精细调节的高阶寡聚物形成在调节细胞出口的晚期阶段中的作用。总的来说,我们的研究结果强调了麻疹病毒 M 蛋白中的两个微域作为药物设计的新的有吸引力的靶标。