Suppr超能文献

通过拉格朗日深度学习学习生成宇宙流体动力学的有效物理定律。

Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian deep learning.

作者信息

Dai Biwei, Seljak Uroš

机构信息

Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720;

Department of Physics, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2020324118.

Abstract

The goal of generative models is to learn the intricate relations between the data to create new simulated data, but current approaches fail in very high dimensions. When the true data-generating process is based on physical processes, these impose symmetries and constraints, and the generative model can be created by learning an effective description of the underlying physics, which enables scaling of the generative model to very high dimensions. In this work, we propose Lagrangian deep learning (LDL) for this purpose, applying it to learn outputs of cosmological hydrodynamical simulations. The model uses layers of Lagrangian displacements of particles describing the observables to learn the effective physical laws. The displacements are modeled as the gradient of an effective potential, which explicitly satisfies the translational and rotational invariance. The total number of learned parameters is only of order 10, and they can be viewed as effective theory parameters. We combine N-body solver fast particle mesh (FastPM) with LDL and apply it to a wide range of cosmological outputs, from the dark matter to the stellar maps, gas density, and temperature. The computational cost of LDL is nearly four orders of magnitude lower than that of the full hydrodynamical simulations, yet it outperforms them at the same resolution. We achieve this with only of order 10 layers from the initial conditions to the final output, in contrast to typical cosmological simulations with thousands of time steps. This opens up the possibility of analyzing cosmological observations entirely within this framework, without the need for large dark-matter simulations.

摘要

生成模型的目标是学习数据之间的复杂关系以创建新的模拟数据,但当前方法在非常高的维度上会失效。当真实的数据生成过程基于物理过程时,这些过程会施加对称性和约束,并且可以通过学习基础物理的有效描述来创建生成模型,这使得生成模型能够扩展到非常高的维度。在这项工作中,我们为此目的提出了拉格朗日深度学习(LDL),并将其应用于学习宇宙流体动力学模拟的输出。该模型使用描述可观测量的粒子拉格朗日位移层来学习有效的物理定律。位移被建模为有效势的梯度,这明确满足平移和旋转不变性。学习参数的总数仅为10的量级,并且它们可以被视为有效理论参数。我们将N体求解器快速粒子网格(FastPM)与LDL相结合,并将其应用于广泛的宇宙学输出,从暗物质到恒星图、气体密度和温度。LDL的计算成本比全流体动力学模拟低近四个数量级,但在相同分辨率下它的表现优于全流体动力学模拟。与具有数千个时间步长的典型宇宙学模拟相比,我们从初始条件到最终输出仅用10层左右就实现了这一点。这开辟了在这个框架内完全分析宇宙学观测结果而无需大型暗物质模拟的可能性。

相似文献

4
AI-assisted superresolution cosmological simulations.人工智能辅助超分辨率宇宙学模拟。
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2022038118.
7
Starting Cosmological Simulations from the Big Bang.从大爆炸开始的宇宙学模拟。
Phys Rev Lett. 2024 Mar 29;132(13):131003. doi: 10.1103/PhysRevLett.132.131003.
8
A Novel Approach to Visualizing Dark Matter Simulations.一种可视化暗物质模拟的新方法。
IEEE Trans Vis Comput Graph. 2012 Dec;18(12):2078-87. doi: 10.1109/TVCG.2012.187.
10
Learning to predict the cosmological structure formation.学习预测宇宙结构形成。
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13825-13832. doi: 10.1073/pnas.1821458116. Epub 2019 Jun 24.

引用本文的文献

1
AI-assisted superresolution cosmological simulations.人工智能辅助超分辨率宇宙学模拟。
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2022038118.

本文引用的文献

1
Learning to predict the cosmological structure formation.学习预测宇宙结构形成。
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13825-13832. doi: 10.1073/pnas.1821458116. Epub 2019 Jun 24.
2

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验