List Florian, Hahn Oliver, Rampf Cornelius
Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, 1180 Vienna, Austria and Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria.
Phys Rev Lett. 2024 Mar 29;132(13):131003. doi: 10.1103/PhysRevLett.132.131003.
The cosmic large-scale structure (LSS) provides a unique testing ground for connecting fundamental physics to astronomical observations. Modeling the LSS requires numerical N-body simulations or perturbative techniques that both come with distinct shortcomings. Here we present the first unified numerical approach, enabled by new time integration and discreteness reduction schemes, and demonstrate its convergence at the field level. In particular, we show that our simulations (i) can be initialized directly at time zero, and (ii) can be made to agree with high-order Lagrangian perturbation theory in the fluid limit. This enables fast, self-consistent, and UV-complete forward modeling of LSS observables.
宇宙大尺度结构(LSS)为将基础物理学与天文观测联系起来提供了一个独特的试验场。对LSS进行建模需要数值N体模拟或微扰技术,而这两种方法都有明显的缺点。在此,我们提出了第一种统一的数值方法,该方法由新的时间积分和离散性降低方案实现,并在场级证明了其收敛性。特别是,我们表明我们的模拟(i)可以在时间零点直接初始化,并且(ii)在流体极限下可以与高阶拉格朗日微扰理论一致。这使得对LSS可观测量进行快速、自洽且紫外完备的正向建模成为可能。