University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020, Ariana, Tunisia.
Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Sci Rep. 2021 Apr 14;11(1):8124. doi: 10.1038/s41598-021-87487-2.
Bioremediation offers a viable alternative for the reduction of contaminants from the environment, particularly petroleum and its recalcitrant derivatives. In this study, the ability of a strain of Pseudomonas BUN14 to degrade crude oil, pristane and dioxin compounds, and to produce biosurfactants, was investigated. BUN14 is a halotolerant strain isolated from polluted sediment recovered from the refinery harbor on the Bizerte coast, north Tunisia and capable of producing surfactants. The strain BUN14 was assembled into 22 contigs of 4,898,053 bp with a mean GC content of 62.4%. Whole genome phylogeny and comparative genome analyses showed that strain BUN14 could be affiliated with two validly described Pseudomonas Type Strains, P. kunmingensis DSM 25974 and P. chloritidismutans AW-1. The current study, however, revealed that the two Type Strains are probably conspecific and, given the priority of the latter, we proposed that P. kunmingensis DSM 25974 is a heteronym of P. chloritidismutans AW-1. Using GC-FID analysis, we determined that BUN14 was able to use a range of hydrocarbons (crude oil, pristane, dibenzofuran, dibenzothiophene, naphthalene) as a sole carbon source. Genome analysis of BUN14 revealed the presence of a large repertoire of proteins (154) related to xenobiotic biodegradation and metabolism. Thus, 44 proteins were linked to the pathways for complete degradation of benzoate and naphthalene. The annotation of conserved functional domains led to the detection of putative genes encoding enzymes of the rhamnolipid biosynthesis pathway. Overall, the polyvalent hydrocarbon degradation capacity of BUN14 makes it a promising candidate for application in the bioremediation of polluted saline environments.
生物修复为减少环境中的污染物,特别是石油及其难降解衍生物提供了一种可行的替代方法。在这项研究中,研究了一株假单胞菌 BUN14 降解原油、姥鲛烷和二噁英化合物并产生生物表面活性剂的能力。BUN14 是一株耐盐菌株,从突尼斯北部比塞大海岸炼油厂港口受污染的沉积物中分离得到,能够产生表面活性剂。该菌株 BUN14 由 22 个 4,898,053bp 的 contigs 组成,平均 GC 含量为 62.4%。全基因组系统发育和比较基因组分析表明,菌株 BUN14 可能与两种有效描述的假单胞菌模式菌株,即 P. kunmingensis DSM 25974 和 P. chloritidismutans AW-1 有关。然而,本研究表明这两种模式菌株可能是同一种,鉴于后者的优先权,我们建议将 P. kunmingensis DSM 25974 作为 P. chloritidismutans AW-1 的异名。通过 GC-FID 分析,我们确定 BUN14 能够利用一系列烃类(原油、姥鲛烷、二苯并呋喃、二苯并噻吩、萘)作为唯一的碳源。BUN14 的基因组分析显示,存在大量与异生物质生物降解和代谢相关的蛋白质(154 种)。因此,有 44 种蛋白质与苯甲酸和萘的完全降解途径有关。保守功能域的注释导致检测到编码 rhamnolipid 生物合成途径的酶的推定基因。总的来说,BUN14 多价烃类降解能力使其成为污染盐环境生物修复的有前途的候选物。