Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA.
Biotechnology Research Division, National Root Crops Research Institute, Umudike, Abia State, Nigeria.
G3 (Bethesda). 2021 Apr 15;11(4). doi: 10.1093/g3journal/jkab028.
Research on a few model plant-pathogen systems has benefitted from years of tool and resource development. This is not the case for the vast majority of economically and nutritionally important plants, creating a crop improvement bottleneck. Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is an important disease in all regions where cassava (Manihot esculenta Crantz) is grown. Here, we describe the development of cassava that can be used to visualize one of the initial steps of CBB infection in vivo. Using CRISPR-mediated homology-directed repair (HDR), we generated plants containing scarless insertion of GFP at the 3' end of CBB susceptibility (S) gene MeSWEET10a. Activation of MeSWEET10a-GFP by the transcription activator-like (TAL) effector TAL20 was subsequently visualized at transcriptional and translational levels. To our knowledge, this is the first such demonstration of HDR via gene editing in cassava.
对一些模式植物-病原体系统的研究得益于多年来工具和资源的开发。但对于绝大多数具有重要经济和营养价值的植物来说,情况并非如此,这就形成了作物改良的瓶颈。木薯细菌性条斑病(CBB)由黄单胞菌木薯致病变种(Xam)引起,是木薯(Manihot esculenta Crantz)种植地区的一种重要病害。在这里,我们描述了一种可用于活体可视化 CBB 感染初始步骤之一的木薯的开发。我们使用 CRISPR 介导的同源定向修复(HDR),在 CBB 易感性(S)基因 MeSWEET10a 的 3'端无痕插入 GFP,随后在转录和翻译水平上可视化 TAL 效应物 TAL20 对 MeSWEET10a-GFP 的激活。据我们所知,这是在木薯中通过基因编辑进行 HDR 的首次此类演示。