Department of Mechanical Engineering, Virginia Polytechnic Institute of Technology and State University, Blacksburg, Virginia 24060, United States.
ACS Biomater Sci Eng. 2023 Jul 10;9(7):3900-3911. doi: 10.1021/acsbiomaterials.0c01587. Epub 2021 Apr 15.
A bioinspired study on replicating the superior damage tolerance of bioceramic composites requires a detailed understanding of the intrinsic properties of biogenic mineral units. Here, we investigate and compare the intrinsic properties of biogenic calcite () and aragonite () by conducting microbending experiments on the separated prismatic building blocks. Analyzed bending results indicate that the biogenic calcite has a higher modulus (36.24 ± 14.4 GPa for . 29.9 ± 10.5 GPa for ) and strength (446.5 ± 141.5 MPa for . 338.6 ± 63.2 MPa for ) than the biogenic aragonite, while the nanoindentation results indicate the opposite trend. Further systematic fractographic analysis suggests that the biogenic calcite fractures like amorphous glass, while the biogenic aragonite resembles polycrystalline ceramics. These contradictory behaviors of biogenic calcite and aragonite under tension-dominated (microbending) and indentation loading conditions are attributed to their different intrinsic structures, i.e., intracrystalline organic inclusions in single-crystal calcite vs. interlocked nanograins in polycrystalline aragonite.
为了仿生复制生物陶瓷复合材料的卓越损伤耐受性,需要深入了解生物成因矿物单元的固有特性。在这里,我们通过对分离的棱柱形建筑块进行微弯曲实验,研究和比较了生物成因方解石()和文石()的固有特性。分析的弯曲结果表明,生物成因方解石的模量(。 29.9 ± 10.5 GPa)和强度(446.5 ± 141.5 MPa)均高于生物成因文石(。 338.6 ± 63.2 MPa),而纳米压痕结果则相反。进一步的系统断口分析表明,生物成因方解石的断裂方式类似于无定形玻璃,而生物成因文石则类似于多晶陶瓷。生物成因方解石和文石在拉伸主导(微弯曲)和压痕加载条件下的这些矛盾行为归因于它们不同的固有结构,即单晶方解石中的晶内有机夹杂物与多晶文石中的互锁纳米晶粒。