Suppr超能文献

分子尺度上理解珊瑚和贝壳的偏轴增韧

A Molecular-Scale Understanding of Misorientation Toughening in Corals and Seashells.

机构信息

Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2023 Jul;35(28):e2300373. doi: 10.1002/adma.202300373. Epub 2023 Apr 25.

Abstract

Biominerals are organic-mineral composites formed by living organisms. They are the hardest and toughest tissues in those organisms, are often polycrystalline, and their mesostructure (which includes nano- and microscale crystallite size, shape, arrangement, and orientation) can vary dramatically. Marine biominerals may be aragonite, vaterite, or calcite, all calcium carbonate (CaCO ) polymorphs, differing in crystal structure. Unexpectedly, diverse CaCO biominerals such as coral skeletons and nacre share a similar characteristic: Adjacent crystals are slightly misoriented. This observation is documented quantitatively at the micro- and nanoscales, using polarization-dependent imaging contrast mapping (PIC mapping), and the slight misorientations are consistently between 1° and 40°. Nanoindentation shows that both polycrystalline biominerals and abiotic synthetic spherulites are tougher than single-crystalline geologic aragonite. Molecular dynamics (MD) simulations of bicrystals at the molecular scale reveal that aragonite, vaterite, and calcite exhibit toughness maxima when the bicrystals are misoriented by 10°, 20°, and 30°, respectively, demonstrating that slight misorientation alone can increase fracture toughness. Slight-misorientation-toughening can be harnessed for synthesis of bioinspired materials that only require one material, are not limited to specific top-down architecture, and are easily achieved by self-assembly of organic molecules (e.g., aspirin, chocolate), polymers, metals, and ceramics well beyond biominerals.

摘要

生物矿物是由生物体形成的有机-矿物复合材料。它们是这些生物体中最坚硬和最坚韧的组织,通常是多晶的,其介观结构(包括纳米和微尺度的晶粒大小、形状、排列和取向)可以显著变化。海洋生物矿物可能是方解石、文石或霰石,都是碳酸钙(CaCO3)的多晶型物,晶体结构不同。出人意料的是,珊瑚骨骼和珍珠层等不同的 CaCO3 生物矿物具有相似的特征:相邻的晶体略有错位。这一观察结果在微观和纳米尺度上通过偏振相关成像对比度映射(PIC 映射)进行了定量记录,并且略微的错位始终在 1°到 40°之间。纳米压痕表明,多晶生物矿物和非生物合成球晶都比单晶地质文石更坚韧。分子动力学(MD)模拟在分子尺度上揭示了文石、霰石和方解石的双晶,当双晶的错位分别为 10°、20°和 30°时,表现出最大的韧性,表明仅略微的错位就能提高断裂韧性。可以利用轻微错位增韧来合成仿生材料,这些材料只需要一种材料,不受特定自上而下架构的限制,并且可以通过有机分子(如阿司匹林、巧克力)、聚合物、金属和陶瓷的自组装很容易地实现,远远超出生物矿物的范围。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验