Gorantla Sai Manoj N V T, Parameswaran Pattiyil, Mondal Kartik Chandra
Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
Department of Chemistry, NIT Calicut, Kozhikhode, India.
J Comput Chem. 2021 Jun 15;42(16):1159-1177. doi: 10.1002/jcc.26530. Epub 2021 Apr 15.
The stability and bonding of a series of hetero-diatomic molecules with general formula (cAAC)EM(CO) , where cAAC = cyclic alkyl(amino) carbene; E = group 14 elements (C, Si, and Ge); M = transition metal (Ni, Fe, and Cr) have been studied by quantum chemical calculations using density functional theory (DFT) and energy decomposition analysis-natural orbital chemical valence (EDA-NOCV). The equilibrium geometries were calculated at the BP86/def2-TZVPP level of theory. The tri-coordinated group 14 complex (1a, 4a, and 7a) in which one of the CO groups is migrated to the central group 14 element from adjacent metal is theoretically found to be more stable when the central atom (E) is carbon. On the other hand, the two-coordinate group 14 element containing metal-complexes (2, 5, 8, 3, 6, and 9) are found to be more stable with their corresponding heavier analogues. The electronic structures of all the molecules have been analyzed by molecular orbital, topological analysis of electron density and natural bond orbital (NBO) analysis at the M06/def2-TZVPP//BP86/def2-TZVPP level of theory. The nature of the cAACE and EM bonds has been studied by EDA-NOCV calculations at BP86-D3(BJ)/TZ2P level of theory. The EDA analysis suggests that the bonding of cAACC(CO) can be best represented by electron sharing σ and π interactions, whereas, C(CO)M(CO) by dative σ and π interactions. On the other hand, EDA-NOCV calculations suggests both dative σ and π interactions for cAACE and EM(CO) bonds of the corresponding Si and Ge analogues having stronger σ- and relatively weaker π-bonds. The topological analysis of electron density supports the closed-shell interaction for the Si and Ge complexes and open-shell interaction for the carbon complexes. The calculated proton affinity and hydride affinity values corroborated well with the present bonding description. This class of complexes might act as efficient future catalysts for different organic transformations due to the presence of electron rich group 14 element and metal carbonyl.
通过使用密度泛函理论(DFT)和能量分解分析 - 自然轨道化学价键(EDA - NOCV)的量子化学计算,研究了一系列通式为(cAAC)EM(CO) 的杂双原子分子的稳定性和键合情况,其中cAAC = 环状烷基(氨基)卡宾;E = 第14族元素(C、Si和Ge);M = 过渡金属(Ni、Fe和Cr)。在BP86/def2 - TZVPP理论水平下计算了平衡几何结构。理论上发现,当中心原子(E)为碳时,其中一个CO基团从相邻金属迁移至中心第14族元素的三配位第14族配合物(1a、4a和7a)更稳定。另一方面,发现含金属的两配位第14族元素配合物(2、5、8、3、6和9)与其相应的较重类似物更稳定。在M06/def2 - TZVPP//BP86/def2 - TZVPP理论水平下,通过分子轨道、电子密度拓扑分析和自然键轨道(NBO)分析对所有分子的电子结构进行了分析。在BP86 - D3(BJ)/TZ2P理论水平下,通过EDA - NOCV计算研究了cAACE和EM键的性质。EDA分析表明,cAACC(CO) 的键合可以最好地用电子共享σ和π相互作用来表示,而C(CO)M(CO) 则通过给予性σ和π相互作用来表示。另一方面,EDA - NOCV计算表明,对于相应的Si和Ge类似物的cAACE和EM(CO) 键,给予性σ和π相互作用都存在,且具有较强的σ键和相对较弱的π键。电子密度的拓扑分析支持Si和Ge配合物的闭壳层相互作用以及碳配合物的开壳层相互作用。计算得到的质子亲和能和氢化物亲和能值与目前的键合描述吻合良好。由于存在富电子的第14族元素和金属羰基,这类配合物可能成为未来不同有机转化的有效催化剂。