Suppr超能文献

压缩感知在高效成像转录组学中的应用。

Compressed sensing for highly efficient imaging transcriptomics.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.

出版信息

Nat Biotechnol. 2021 Aug;39(8):936-942. doi: 10.1038/s41587-021-00883-x. Epub 2021 Apr 15.

Abstract

Recent methods for spatial imaging of tissue samples can identify up to ~100 individual proteins or RNAs at single-cell resolution. However, the number of proteins or genes that can be studied in these approaches is limited by long imaging times. Here we introduce Composite In Situ Imaging (CISI), a method that leverages structure in gene expression across both cells and tissues to limit the number of imaging cycles needed to obtain spatially resolved gene expression maps. CISI defines gene modules that can be detected using composite measurements from imaging probes for subsets of genes. The data are then decompressed to recover expression values for individual genes. CISI further reduces imaging time by not relying on spot-level resolution, enabling lower magnification acquisition, and is overall about 500-fold more efficient than current methods. Applying CISI to 12 mouse brain sections, we accurately recovered the spatial abundance of 37 individual genes from 11 composite measurements covering 180 mm and 476,276 cells.

摘要

最近的组织样本空间成像方法可以在单细胞分辨率下鉴定多达约 100 种单个蛋白质或 RNA。然而,这些方法可以研究的蛋白质或基因数量受到长成像时间的限制。在这里,我们介绍了复合原位成像(CISI),这是一种利用细胞和组织中基因表达的结构来限制获得空间分辨基因表达图谱所需的成像循环次数的方法。CISI 定义了可以使用成像探针的组合测量来检测的基因模块,这些探针针对基因的子集。然后对数据进行解压缩以恢复各个基因的表达值。CISI 通过不依赖于点级分辨率进一步减少了成像时间,从而能够实现更低的放大倍数采集,并且整体效率比当前方法高约 500 倍。我们将 CISI 应用于 12 个小鼠脑切片,仅用 11 次复合测量就从覆盖 180mm 和 476276 个细胞的 180mm 区域中准确地恢复了 37 个单个基因的空间丰度。

相似文献

1
Compressed sensing for highly efficient imaging transcriptomics.
Nat Biotechnol. 2021 Aug;39(8):936-942. doi: 10.1038/s41587-021-00883-x. Epub 2021 Apr 15.
2
Spatial tissue profiling by imaging-free molecular tomography.
Nat Biotechnol. 2021 Aug;39(8):968-977. doi: 10.1038/s41587-021-00879-7. Epub 2021 Apr 19.
3
RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells.
Science. 2015 Apr 24;348(6233):aaa6090. doi: 10.1126/science.aaa6090. Epub 2015 Apr 9.
4
Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes.
Nat Commun. 2024 Mar 15;15(1):2342. doi: 10.1038/s41467-024-46669-y.
5
Method of the Year 2020: spatially resolved transcriptomics.
Nat Methods. 2021 Jan;18(1):1. doi: 10.1038/s41592-020-01042-x.
6
7
Accelerated 3D echo-planar imaging with compressed sensing for time-resolved hyperpolarized C studies.
Magn Reson Med. 2017 Feb;77(2):538-546. doi: 10.1002/mrm.26125. Epub 2016 Jan 24.
8
Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH.
Nat Biotechnol. 2023 Feb;41(2):222-231. doi: 10.1038/s41587-022-01455-3. Epub 2022 Sep 22.
9
Optimization-based decoding of Imaging Spatial Transcriptomics data.
Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad362.
10
Spatially resolved transcriptomics and beyond.
Nat Rev Genet. 2015 Jan;16(1):57-66. doi: 10.1038/nrg3832. Epub 2014 Dec 2.

引用本文的文献

1
Deep compressed multichannel adaptive optics scanning light ophthalmoscope.
Sci Adv. 2025 May 9;11(19):eadr5912. doi: 10.1126/sciadv.adr5912.
2
High-dimensional imaging using combinatorial channel multiplexing and deep learning.
Nat Biotechnol. 2025 Mar 25. doi: 10.1038/s41587-025-02585-0.
3
Interpretable deep learning for deconvolutional analysis of neural signals.
Neuron. 2025 Apr 16;113(8):1151-1168.e13. doi: 10.1016/j.neuron.2025.02.006. Epub 2025 Mar 12.
4
Selective learning for sensing using shift-invariant spectrally stable undersampled networks.
Sci Rep. 2024 Dec 30;14(1):32041. doi: 10.1038/s41598-024-83706-8.
5
Spatial Single-Cell Mapping of Transcriptional Differences Across Genetic Backgrounds in Mouse Brains.
bioRxiv. 2024 Oct 9:2024.10.08.617260. doi: 10.1101/2024.10.08.617260.
6
Multiplexed, image-based pooled screens in primary cells and tissues with PerturbView.
Nat Biotechnol. 2024 Oct 7. doi: 10.1038/s41587-024-02391-0.
7
Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes.
Nat Commun. 2024 Mar 15;15(1):2342. doi: 10.1038/s41467-024-46669-y.
8
scGIST: gene panel design for spatial transcriptomics with prioritized gene sets.
Genome Biol. 2024 Feb 26;25(1):57. doi: 10.1186/s13059-024-03185-y.
9
Interpretable deep learning for deconvolutional analysis of neural signals.
bioRxiv. 2024 Dec 2:2024.01.05.574379. doi: 10.1101/2024.01.05.574379.
10
Multiplex, Quantitative, High-Resolution Imaging of Protein:Protein Complexes via Hybridization Chain Reaction.
ACS Chem Biol. 2024 Feb 16;19(2):280-288. doi: 10.1021/acschembio.3c00431. Epub 2024 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验