Suppr超能文献

使用平移不变频谱稳定欠采样网络进行感知的选择性学习

Selective learning for sensing using shift-invariant spectrally stable undersampled networks.

作者信息

Verma Ankur, Goyal Ayush, Sarma Sanjay, Kumara Soundar

机构信息

Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

出版信息

Sci Rep. 2024 Dec 30;14(1):32041. doi: 10.1038/s41598-024-83706-8.

Abstract

The amount of data collected for sensing tasks in scientific computing is based on the Shannon-Nyquist sampling theorem proposed in the 1940s. Sensor data generation will surpass 73 trillion GB by 2025 as we increase the high-fidelity digitization of the physical world. Skyrocketing data infrastructure costs and time to maintain and compute on all this data are increasingly common. To address this, we introduce a selective learning approach, where the amount of data collected is problem dependent. We develop novel shift-invariant and spectrally stable neural networks to solve real-time sensing problems formulated as classification or regression problems. We demonstrate that (i) less data can be collected while preserving information, and (ii) test accuracy improves with data augmentation (size of training data), rather than by collecting more than a certain fraction of raw data, unlike information theoretic approaches. While sampling at Nyquist rates, every data point does not have to be resolved at Nyquist and the network learns the amount of data to be collected. This has significant implications (orders of magnitude reduction) on the amount of data collected, computation, power, time, bandwidth, and latency required for several embedded applications ranging from low earth orbit economy to unmanned underwater vehicles.

摘要

科学计算中用于传感任务所收集的数据量是基于20世纪40年代提出的香农 - 奈奎斯特采样定理。随着我们提高物理世界的高保真数字化程度,到2025年传感器数据生成量将超过73万亿GB。激增的数据基础设施成本以及维护和处理所有这些数据所需的时间越来越常见。为了解决这个问题,我们引入了一种选择性学习方法,其中收集的数据量取决于问题。我们开发了新颖的平移不变且频谱稳定的神经网络,以解决被表述为分类或回归问题的实时传感问题。我们证明:(i)在保留信息的同时可以收集更少的数据;(ii)与信息论方法不同,测试精度是随着数据增强(训练数据的大小)而提高,而不是通过收集超过一定比例的原始数据来提高。在以奈奎斯特速率采样时,并非每个数据点都必须以奈奎斯特分辨率来解析,并且网络会学习要收集的数据量。这对于从低地球轨道经济到无人水下航行器等多种嵌入式应用在收集的数据量、计算、功率、时间、带宽和延迟方面都有重大影响(数量级的减少)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef77/11686352/6c195ba2bb2a/41598_2024_83706_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验