Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
The Alan Turing Institute, London, UK.
Nat Med. 2021 May;27(5):833-841. doi: 10.1038/s41591-021-01287-9. Epub 2021 Apr 15.
Deep learning methods have been shown to achieve excellent performance on diagnostic tasks, but how to optimally combine them with expert knowledge and existing clinical decision pathways is still an open challenge. This question is particularly important for the early detection of cancer, where high-volume workflows may benefit from (semi-)automated analysis. Here we present a deep learning framework to analyze samples of the Cytosponge-TFF3 test, a minimally invasive alternative to endoscopy, for detecting Barrett's esophagus, which is the main precursor of esophageal adenocarcinoma. We trained and independently validated the framework on data from two clinical trials, analyzing a combined total of 4,662 pathology slides from 2,331 patients. Our approach exploits decision patterns of gastrointestinal pathologists to define eight triage classes of varying priority for manual expert review. By substituting manual review with automated review in low-priority classes, we can reduce pathologist workload by 57% while matching the diagnostic performance of experienced pathologists.
深度学习方法在诊断任务上表现出色,但如何将其与专家知识和现有的临床决策路径最佳结合仍然是一个悬而未决的问题。这个问题对于癌症的早期检测尤为重要,因为大容量的工作流程可能受益于(半)自动化分析。在这里,我们提出了一个深度学习框架,用于分析 Cytosponge-TFF3 测试样本,这是内窥镜检查的一种微创替代方法,用于检测 Barrett 食管,这是食管腺癌的主要前体。我们在两项临床试验的数据上进行了训练和独立验证,总共分析了 2331 名患者的 4662 张病理切片。我们的方法利用胃肠病理学家的决策模式来定义 8 个不同优先级的分诊类别,以便进行手动专家审查。通过在低优先级类别中用自动化审查替代手动审查,我们可以将病理学家的工作量减少 57%,同时达到有经验的病理学家的诊断性能。