Suppr超能文献

MetaPred:利用有限患者电子健康记录进行临床风险预测的元学习

MetaPred: Meta-Learning for Clinical Risk Prediction with Limited Patient Electronic Health Records.

作者信息

Zhang Xi Sheryl, Tang Fengyi, Dodge Hiroko H, Zhou Jiayu, Wang Fei

机构信息

Department of Healthcare Policy and Research. Weill Cornell Medicine. Cornell University.

Department of Computer Science and Engineering. Michigan State University.

出版信息

KDD. 2019 Aug;2019:2487-2495. doi: 10.1145/3292500.3330779.

Abstract

In recent years, large amounts of health data, such as patient Electronic Health Records (EHR), are becoming readily available. This provides an unprecedented opportunity for knowledge discovery and data mining algorithms to dig insights from them, which can, later on, be helpful to the improvement of the quality of care delivery. Predictive modeling of clinical risks, including in-hospital mortality, hospital readmission, chronic disease onset, condition exacerbation, etc., from patient EHR, is one of the health data analytic problems that attract lots of the interests. The reason is not only because the problem is important in clinical settings, but also is challenging when working with EHR such as sparsity, irregularity, temporality, etc. Different from applications in other domains such as computer vision and natural language processing, the data samples in medicine (patients) are relatively limited, which creates lots of troubles for building effective predictive models, especially for complicated ones such as deep learning. In this paper, we propose MetaPred, a meta-learning framework for clinical risk prediction from longitudinal patient EHR. In particular, in order to predict the target risk with limited data samples, we train a meta-learner from a set of related risk prediction tasks which learns how a good predictor is trained. The meta-learned can then be directly used in target risk prediction, and the limited available samples in the target domain can be used for further fine-tuning the model performance. The effectiveness of MetaPred is tested on a real patient EHR repository from Oregon Health & Science University. We are able to demonstrate that with Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) as base predictors, MetaPred can achieve much better performance for predicting target risk with low resources comparing with the predictor trained on the limited samples available for this risk alone.

摘要

近年来,大量的健康数据,如患者电子健康记录(EHR),正变得易于获取。这为知识发现和数据挖掘算法从这些数据中挖掘见解提供了前所未有的机会,这些见解随后有助于提高医疗服务质量。从患者电子健康记录中对临床风险进行预测建模,包括住院死亡率、医院再入院率、慢性病发病、病情加重等,是吸引众多关注的健康数据分析问题之一。原因不仅在于该问题在临床环境中很重要,而且在处理电子健康记录时具有挑战性,如稀疏性、不规则性、时间性等。与计算机视觉和自然语言处理等其他领域的应用不同,医学领域的数据样本(患者)相对有限,这给构建有效的预测模型带来了诸多麻烦,尤其是对于深度学习等复杂模型。在本文中,我们提出了MetaPred,一种用于从纵向患者电子健康记录中进行临床风险预测的元学习框架。具体而言,为了用有限的数据样本预测目标风险,我们从一组相关的风险预测任务中训练一个元学习者,该元学习者学习如何训练一个好的预测器。然后,元学习器可直接用于目标风险预测,并且目标领域中有限的可用样本可用于进一步微调模型性能。我们在俄勒冈健康与科学大学的真实患者电子健康记录库上测试了MetaPred的有效性。我们能够证明,以卷积神经网络(CNN)和循环神经网络(RNN)作为基础预测器,与仅在该风险可用的有限样本上训练的预测器相比,MetaPred在低资源情况下预测目标风险时能取得更好的性能。

相似文献

6
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.
9
Deep learning predicts extreme preterm birth from electronic health records.深度学习从电子健康记录预测极早产。
J Biomed Inform. 2019 Dec;100:103334. doi: 10.1016/j.jbi.2019.103334. Epub 2019 Oct 31.

引用本文的文献

4
PromptLink: Leveraging Large Language Models for Cross-Source Biomedical Concept Linking.PromptLink:利用大语言模型进行跨源生物医学概念链接。
Int ACM SIGIR Conf Res Dev Inf Retr. 2024 Jul;2024:2589-2593. doi: 10.1145/3626772.3657904. Epub 2024 Jul 11.

本文引用的文献

9
Predicting frequent COPD exacerbations using primary care data.利用基层医疗数据预测慢性阻塞性肺疾病频繁急性加重
Int J Chron Obstruct Pulmon Dis. 2015 Nov 9;10:2439-50. doi: 10.2147/COPD.S94259. eCollection 2015.
10
Deep learning.深度学习。
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验