Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211800, China.
Department of Rehabilitation Medicine (High Dependency Unit, HDU), Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China and Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
Biomater Sci. 2021 May 4;9(9):3293-3299. doi: 10.1039/d1bm00457c.
Drug-resistant pathogens are less sensitive to traditional antibiotics in many stubborn infections. It is imminently desirable to have an effective alternative therapeutic agent for combating drug-resistant pathogen infections. Herein, a photo-triggered multifunctional nanoplatform (TMOB/FLU@PCM NPs) with efflux pump and heat shock protein expression reversal activity is developed for the highly effective eradication of drug-resistant fungi. Upon 808 nm laser excitation, the hyperthermia originating from a BODIPY derivative (TMOB) can not only melt the phase-change material (PCM) vehicle consisting of hexadecanol and cis-2-dodecenoic acid (BDSF) to on-demand release the quorum sensing molecule BDSF and the antifungal drug fluconazole (FLU), but can also destroy the integrity of the C. albicans cell membrane. Thanks to the release of BDSF from TMOB/FLU@PCM NPs, the expression of drug efflux pumps (MDR1, CDR2, CDR4) and thermotolerant proteins (HSP12, HSP21, HSP60, HSP90) is inhibited, which further boosts the therapeutic effect of chemo/photothermal therapy. Moreover, the hyphal and biofilm formation of C. albicans can be blocked by TMOB/FLU@PCM NPs under 808 nm laser irradiation. In vitro and in vivo results indicate that TMOB/FLU@PCM NPs with good biosafety can efficiently eliminate clinical azole-resistant C. albicans. Thus, TMOB/FLU@PCM NPs exhibits a promising future in the treatment of azole-resistant C. albicans infection.
耐药病原体在许多顽固感染中对传统抗生素的敏感性较低。迫切需要有一种有效的替代治疗药物来对抗耐药病原体感染。在此,开发了一种具有外排泵和热休克蛋白表达逆转活性的光触发多功能纳米平台(TMOB/FLU@PCM NPs),可高效消除耐药真菌。在 808nm 激光激发下,源于 BODIPY 衍生物(TMOB)的热疗不仅可以使由十六醇和顺-2-十二烯酸(BDSF)组成的相变材料(PCM)载体熔化,以按需释放群体感应分子 BDSF 和抗真菌药物氟康唑(FLU),还可以破坏白色念珠菌细胞膜的完整性。由于 TMOB/FLU@PCM NPs 中 BDSF 的释放,药物外排泵(MDR1、CDR2、CDR4)和耐热蛋白(HSP12、HSP21、HSP60、HSP90)的表达受到抑制,这进一步增强了化学/光热治疗的疗效。此外,TMOB/FLU@PCM NPs 在 808nm 激光照射下可以阻止白色念珠菌的菌丝和生物膜形成。体外和体内结果表明,具有良好生物安全性的 TMOB/FLU@PCM NPs 可以有效地消除临床唑类耐药的白色念珠菌。因此,TMOB/FLU@PCM NPs 在治疗唑类耐药白色念珠菌感染方面具有广阔的应用前景。