Suppr超能文献

一种用于脉冲高强度聚焦超声(HIFU)应用的新型有源空化映射技术——气泡多普勒。

A new active cavitation mapping technique for pulsed HIFU applications--bubble Doppler.

作者信息

Li Tong, Khokhlova Tatiana D, Sapozhnikov Oleg A, O'Donnell Matthew, Hwang Joo Ha

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1698-708. doi: 10.1109/TUFFC.2014.006502.

Abstract

In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility is tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents-color Doppler, pulse-inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach-bubble Doppler-was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity.

摘要

在这项工作中,提出了一种用于脉冲高强度聚焦超声(pHIFU)应用的新的有源空化映射技术——气泡多普勒,并在仿组织凝胶体模中测试了其可行性。pHIFU治疗使用以低脉冲重复频率发射的短脉冲,以引起瞬态气泡活动,已证明这种活动可增强药物和基因向组织的递送。在pHIFU治疗期间检测和监测空化活动的当前金标准是被动空化检测(PCD),它提供的关于气泡空间分布的信息极少。B模式成像可以检测到高回声形成,但灵敏度非常有限,尤其是对小的瞬态微气泡。这里提出的气泡多普勒方法基于对先前为超声造影剂成像开发的三种多普勒技术——彩色多普勒、脉冲反转多普勒和去相关多普勒——的改进融合。使用三种不同的脉冲序列将多普勒集合脉冲与治疗性pHIFU脉冲交错,并对接收回波应用标准多普勒处理。分别评估了每种技术产生的关于pHIFU诱导的空化气泡的分布和特征的信息,发现它们是互补的。然后提出了统一的方法——气泡多普勒——来在空间上绘制瞬态气泡的存在情况,并估计它们的大小和非线性程度。

相似文献

1
A new active cavitation mapping technique for pulsed HIFU applications--bubble Doppler.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Oct;61(10):1698-708. doi: 10.1109/TUFFC.2014.006502.
2
Dynamic Mode Decomposition for Transient Cavitation Bubbles Imaging in Pulsed High-Intensity Focused Ultrasound Therapy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 May;71(5):596-606. doi: 10.1109/TUFFC.2024.3387351. Epub 2024 May 10.
4
Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
Phys Med Biol. 2016 Sep 21;61(18):6651-6667. doi: 10.1088/0031-9155/61/18/6651. Epub 2016 Aug 19.
5
Inertial Cavitation Behaviors Induced by Nonlinear Focused Ultrasound Pulses.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2884-2895. doi: 10.1109/TUFFC.2021.3073347. Epub 2021 Aug 27.
6
Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.
Ultrasound Med Biol. 2014 Jul;40(7):1523-34. doi: 10.1016/j.ultrasmedbio.2014.01.007. Epub 2014 Mar 6.
7
Passive spatial mapping of inertial cavitation during HIFU exposure.
IEEE Trans Biomed Eng. 2010 Jan;57(1):48-56. doi: 10.1109/TBME.2009.2026907. Epub 2009 Jul 21.
10
The correlation between bubble-enhanced HIFU heating and cavitation power.
IEEE Trans Biomed Eng. 2010 Jan;57(1):175-84. doi: 10.1109/TBME.2009.2028133. Epub 2009 Jul 31.

引用本文的文献

1
Monitoring Fractionation in Elastic Tissues Using High Frame-Rate Doppler Ultrasound.
Ultrasound Med Biol. 2025 Aug 4. doi: 10.1016/j.ultrasmedbio.2025.07.012.
2
Monitoring high-intensity focused ultrasound thermal therapy by ultrasound doppler imaging using twinkling artifact.
PLoS One. 2025 Jul 2;20(7):e0324801. doi: 10.1371/journal.pone.0324801. eCollection 2025.
3
Chirp-Coded Subharmonic Imaging With Volterra Filtering: Histotripsy Bubble Cloud Assessment In Vitro and Ex Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):591-600. doi: 10.1109/TUFFC.2025.3556030. Epub 2025 May 7.
4
Acoustic Cavitation Emissions Predict Near-complete/complete Histotripsy Treatment in Soft Tissues.
Ultrasound Med Biol. 2025 May;51(5):909-920. doi: 10.1016/j.ultrasmedbio.2025.02.005. Epub 2025 Feb 26.
6
Three-Dimensional Super-Resolution Passive Cavitation Mapping in Laser Lithotripsy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1690-1700. doi: 10.1109/TUFFC.2024.3443781. Epub 2025 Jan 8.
7
Dynamic Mode Decomposition for Transient Cavitation Bubbles Imaging in Pulsed High-Intensity Focused Ultrasound Therapy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 May;71(5):596-606. doi: 10.1109/TUFFC.2024.3387351. Epub 2024 May 10.
8
9
Endoscopic Coregistered Ultrasound Imaging and Precision Histotripsy: Initial Evaluation.
BME Front. 2022 Jul 1;2022:9794321. doi: 10.34133/2022/9794321. eCollection 2022.
10
Dual-Mode 1-D Linear Ultrasound Array for Image-Guided Drug Delivery Enhancement Without Ultrasound Contrast Agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Jul;70(7):693-707. doi: 10.1109/TUFFC.2023.3268603. Epub 2023 Jun 29.

本文引用的文献

1
Passive cavitation detection during pulsed HIFU exposures of ex vivo tissues and in vivo mouse pancreatic tumors.
Ultrasound Med Biol. 2014 Jul;40(7):1523-34. doi: 10.1016/j.ultrasmedbio.2014.01.007. Epub 2014 Mar 6.
2
Ultrafast imaging in biomedical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):102-19. doi: 10.1109/TUFFC.2014.6689779.
3
Evidence for trapped surface bubbles as the cause for the twinkling artifact in ultrasound imaging.
Ultrasound Med Biol. 2013 Jun;39(6):1026-38. doi: 10.1016/j.ultrasmedbio.2013.01.011. Epub 2013 Apr 3.
4
Ultrasound mediated localized drug delivery.
Adv Exp Med Biol. 2012;733:145-53. doi: 10.1007/978-94-007-2555-3_14.
6
Spatiotemporal monitoring of high-intensity focused ultrasound therapy with passive acoustic mapping.
Radiology. 2012 Jan;262(1):252-61. doi: 10.1148/radiol.11110670. Epub 2011 Oct 24.
7
Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects.
Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3258-63. doi: 10.1073/pnas.1015771108. Epub 2011 Feb 7.
8
Passive cavitation mapping for localization and tracking of bubble dynamics.
J Acoust Soc Am. 2010 Oct;128(4):EL175-80. doi: 10.1121/1.3467491.
9
Exploiting ultrasound-mediated effects in delivering targeted, site-specific cancer therapy.
Cancer Lett. 2010 Oct 28;296(2):133-43. doi: 10.1016/j.canlet.2010.06.002. Epub 2010 Jul 3.
10
Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506. doi: 10.1109/TUFFC.2009.1067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验