Tu Yongguang, Wu Jiang, Xu Guoning, Yang Xiaoyu, Cai Rong, Gong Qihuang, Zhu Rui, Huang Wei
Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China.
Adv Mater. 2021 May;33(21):e2006545. doi: 10.1002/adma.202006545. Epub 2021 Apr 16.
Metal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e., power to weight ratio), compatibility with flexible substrates, and excellent radiation resistance of perovskite solar cells (PSCs) enable them to be a promising candidate for next-generation space photovoltaic technology. Nevertheless, compared with other practical space photovoltaics, such as silicon and III-V multi-junction compound solar cells, the research on PSCs for space applications is just in the infancy stage. Therefore, there are considerable interests in further strengthening relevant research from the perspective of both mechanism and technology. Consequently, the approaches used for and the consequences of PSCs for space applications are reviewed. This review provides an overview of recent progress in PSCs for space applications in terms of performance evolution and mechanism exploration of perovskite films and devices under space extreme environments.
金属卤化物钙钛矿因其多功能的光电特性而在光伏领域引起了迅速增长的兴趣。钙钛矿太阳能电池(PSC)出色的功率转换效率、高比功率(即功率与重量比)、与柔性衬底的兼容性以及优异的抗辐射性,使其成为下一代空间光伏技术的有前途的候选者。然而,与其他实用的空间光伏技术,如硅和III-V多结化合物太阳能电池相比,用于空间应用的PSC的研究尚处于起步阶段。因此,从机理和技术角度进一步加强相关研究具有相当大的兴趣。因此,对用于空间应用的PSC的方法和结果进行了综述。本综述从空间极端环境下钙钛矿薄膜和器件的性能演变和机理探索方面,概述了用于空间应用的PSC的最新进展。