Suppr超能文献

基于事件触发控制的 Lévy 噪声随机耦合网络同步。

Synchronization for stochastic coupled networks with Lévy noise via event-triggered control.

机构信息

School of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China.

Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, USA.

出版信息

Neural Netw. 2021 Sep;141:40-51. doi: 10.1016/j.neunet.2021.03.028. Epub 2021 Mar 24.

Abstract

This paper addresses the realization of almost sure synchronization problem for a new array of stochastic networks associated with delay and Lévy noise via event-triggered control. The coupling structure of the network is governed by a continuous-time homogeneous Markov chain. The nodes in the networks communicate with each other and update their information only at discrete-time instants so that the network workload can be minimized. Under the framework of stochastic process including Markov chain and Lévy process, and the convergence theorem of non-negative semi-martingales, we show that the Markovian coupled networks can achieve the almost sure synchronization by event-triggered control methodology. The results are further extended to the directed topology, where the coupling structure can be asymmetric. Furthermore, we also proved that the Zeno behavior can be excluded under our proposed approach, indicating that our framework is practically feasible. Numerical simulations are provided to demonstrate the effectiveness of the obtained theoretical results.

摘要

本文通过事件触发控制研究了与延迟和 Lévy 噪声相关的新型随机网络阵列的几乎必然同步问题。网络的耦合结构由连续时间齐次马尔可夫链控制。网络中的节点仅在离散时间点相互通信并更新信息,从而最小化网络工作量。在包含马尔可夫链和 Lévy 过程的随机过程框架内,并应用非负半鞅的收敛定理,我们表明通过事件触发控制方法可以实现马尔可夫耦合网络的几乎必然同步。研究结果进一步扩展到有向拓扑,其中耦合结构可以是不对称的。此外,我们还证明了在我们提出的方法下可以排除零和行为,表明我们的框架在实际中是可行的。数值仿真结果验证了所得到的理论结果的有效性。

相似文献

1
Synchronization for stochastic coupled networks with Lévy noise via event-triggered control.
Neural Netw. 2021 Sep;141:40-51. doi: 10.1016/j.neunet.2021.03.028. Epub 2021 Mar 24.
3
Synchronization of Nonlinearly and Stochastically Coupled Markovian Switching Networks via Event-Triggered Sampling.
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5691-5700. doi: 10.1109/TNNLS.2018.2812102. Epub 2018 Mar 26.
5
Event-triggered synchronization strategy for complex dynamical networks with the Markovian switching topologies.
Neural Netw. 2016 Feb;74:52-7. doi: 10.1016/j.neunet.2015.11.002. Epub 2015 Dec 1.
6
Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters.
IEEE Trans Cybern. 2014 Dec;44(12):2848-60. doi: 10.1109/TCYB.2014.2317236. Epub 2014 Apr 23.
7
Synchronization of Coupled Time-Delay Neural Networks With Mode-Dependent Average Dwell Time Switching.
IEEE Trans Neural Netw Learn Syst. 2020 Dec;31(12):5483-5496. doi: 10.1109/TNNLS.2020.2968342. Epub 2020 Nov 30.
8
Exponential synchronization of neural networks with time-varying delays and stochastic impulses.
Neural Netw. 2020 Dec;132:342-352. doi: 10.1016/j.neunet.2020.09.014. Epub 2020 Sep 19.
9
Finite-time synchronization of stochastic coupled neural networks subject to Markovian switching and input saturation.
Neural Netw. 2018 Sep;105:154-165. doi: 10.1016/j.neunet.2018.05.004. Epub 2018 Jun 14.
10
Decentralized event-triggered synchronization of uncertain Markovian jumping neutral-type neural networks with mixed delays.
Neural Netw. 2017 Feb;86:32-41. doi: 10.1016/j.neunet.2016.10.003. Epub 2016 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验