Suppr超能文献

采用低样本深度学习通过眼表图像检测结膜黑色素瘤。

Adopting low-shot deep learning for the detection of conjunctival melanoma using ocular surface images.

作者信息

Yoo Tae Keun, Choi Joon Yul, Kim Hong Kyu, Ryu Ik Hee, Kim Jin Kuk

机构信息

Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, Republic of Korea.

Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.

出版信息

Comput Methods Programs Biomed. 2021 Jun;205:106086. doi: 10.1016/j.cmpb.2021.106086. Epub 2021 Apr 3.

Abstract

BACKGROUND AND OBJECTIVE

The purpose of the present study was to investigate low-shot deep learning models applied to conjunctival melanoma detection using a small dataset with ocular surface images.

METHODS

A dataset was composed of anonymized images of four classes; conjunctival melanoma (136), nevus or melanosis (93), pterygium (75), and normal conjunctiva (94). Before training involving conventional deep learning models, two generative adversarial networks (GANs) were constructed to augment the training dataset for low-shot learning. The collected data were randomly divided into training (70%), validation (10%), and test (20%) datasets. Moreover, 3D melanoma phantoms were designed to build an external validation set using a smartphone. The GoogleNet, InceptionV3, NASNet, ResNet50, and MobileNetV2 architectures were trained through transfer learning and validated using the test and external validation datasets.

RESULTS

The deep learning model demonstrated a significant improvement in the classification accuracy of conjunctival lesions using synthetic images generated by the GAN models. MobileNetV2 with GAN-based augmentation displayed the highest accuracy of 87.5% in the four-class classification and 97.2% in the binary classification for the detection of conjunctival melanoma. It showed an accuracy of 94.0% using 3D melanoma phantom images captured using a smartphone camera.

CONCLUSIONS

The present study described a low-shot deep learning model that can detect conjunctival melanomas using ocular surface images. To the best of our knowledge, this study is the first to develop a deep learning model to detect conjunctival melanoma using a digital imaging device such as smartphone camera.

摘要

背景与目的

本研究旨在探讨应用于结膜黑色素瘤检测的少样本深度学习模型,该模型使用包含眼表图像的小数据集。

方法

一个数据集由四类匿名图像组成;结膜黑色素瘤(136张)、痣或黑变病(93张)、翼状胬肉(75张)和正常结膜(94张)。在涉及传统深度学习模型的训练之前,构建了两个生成对抗网络(GAN)来扩充训练数据集以进行少样本学习。收集到的数据被随机分为训练集(70%)、验证集(10%)和测试集(20%)。此外,设计了3D黑色素瘤模型以使用智能手机构建一个外部验证集。通过迁移学习对GoogleNet、InceptionV3、NASNet、ResNet50和MobileNetV2架构进行训练,并使用测试集和外部验证集进行验证。

结果

深度学习模型在使用GAN模型生成的合成图像对结膜病变进行分类时,分类准确率有显著提高。基于GAN增强的MobileNetV2在四类分类中检测结膜黑色素瘤的准确率最高,为87.5%,在二分类中为97.2%。使用智能手机摄像头拍摄的3D黑色素瘤模型图像时,其准确率为94.0%。

结论

本研究描述了一种少样本深度学习模型,该模型可使用眼表图像检测结膜黑色素瘤。据我们所知,本研究是首次开发一种使用智能手机摄像头等数字成像设备检测结膜黑色素瘤的深度学习模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验