Suppr超能文献

利用深度学习网络实现智能手机相机自动检测严重咽炎。

Toward automated severe pharyngitis detection with smartphone camera using deep learning networks.

机构信息

Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, Cheongju, South Korea.

Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.

出版信息

Comput Biol Med. 2020 Oct;125:103980. doi: 10.1016/j.compbiomed.2020.103980. Epub 2020 Aug 20.

Abstract

PURPOSE

Severe pharyngitis is frequently associated with inflammations caused by streptococcal pharyngitis, which can cause immune-mediated and post-infectious complications. The recent global pandemic of coronavirus disease (COVID-19) encourages the use of telemedicine for patients with respiratory symptoms. This study, therefore, purposes automated detection of severe pharyngitis using a deep learning framework with self-taken throat images.

METHODS

A dataset composed of two classes of 131 throat images with pharyngitis and 208 normal throat images was collected. Before the training classifier, we constructed a cycle consistency generative adversarial network (CycleGAN) to augment the training dataset. The ResNet50, Inception-v3, and MobileNet-v2 architectures were trained with transfer learning and validated using a randomly selected test dataset. The performance of the models was evaluated based on the accuracy and area under the receiver operating characteristic curve (ROC-AUC).

RESULTS

The CycleGAN-based synthetic images reflected the pragmatic characteristic features of pharyngitis. Using the synthetic throat images, the deep learning model demonstrated a significant improvement in the accuracy of the pharyngitis diagnosis. ResNet50 with GAN-based augmentation showed the best ROC-AUC of 0.988 for pharyngitis detection in the test dataset. In the 4-fold cross-validation using the ResNet50, the highest detection accuracy and ROC-AUC achieved were 95.3% and 0.992, respectively.

CONCLUSION

The deep learning model for smartphone-based pharyngitis screening allows fast identification of severe pharyngitis with a potential of the timely diagnosis of pharyngitis. In the recent pandemic of COVID-19, this framework will help patients with upper respiratory symptoms to improve convenience in diagnosis and reduce transmission.

摘要

目的

严重咽炎常与链球菌性咽炎引起的炎症有关,可引起免疫介导和感染后并发症。最近的冠状病毒病(COVID-19)全球大流行鼓励使用远程医疗为有呼吸道症状的患者提供服务。因此,本研究旨在使用深度学习框架和自采喉部图像自动检测严重咽炎。

方法

收集了一个由 131 张有咽炎的喉部图像和 208 张正常喉部图像组成的两类数据集。在训练分类器之前,我们构建了一个循环一致性生成对抗网络(CycleGAN)来扩充训练数据集。使用迁移学习训练 ResNet50、Inception-v3 和 MobileNet-v2 架构,并使用随机选择的测试数据集进行验证。根据准确性和接收器操作特征曲线下的面积(ROC-AUC)评估模型的性能。

结果

基于 CycleGAN 的合成图像反映了咽炎的实际特征。使用这些合成喉部图像,深度学习模型在咽炎诊断的准确性方面有了显著提高。基于 GAN 扩充的 ResNet50 显示了在测试数据集中检测咽炎的最佳 ROC-AUC 为 0.988。在使用 ResNet50 的 4 倍交叉验证中,最高检测准确率和 ROC-AUC 分别达到 95.3%和 0.992。

结论

基于智能手机的咽炎筛查深度学习模型可以快速识别严重咽炎,有望及时诊断咽炎。在最近的 COVID-19 大流行期间,该框架将帮助有上呼吸道症状的患者提高诊断便利性并减少传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验